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We study the phase space region of two- and three-dimensional lattices where a transition from chaotic to
ordered dynamics takes place when the energy is lowered. In this region we find coexistence of degrees of
freedom(DOF’s), endowed with different levels of chaos. The analysis of this complex dynamical pattern
requires the introduction of diagnostic tools suitable for a characterization of single DOF’s: coherence angles
and coherence times. We find that the coherence times—which give a measure of the time each DOF needs to
relax to equilibrium—are roughly proportional to the inverse of the specific energy. This may be useful to
evaluate the reliability of statistical results obtained in computer experiments performed on condensed matter
systems at low energy.

PACS numbdp): 05.45~a, 63.22+m, 63.70:+h

I. INTRODUCTION These questions are of specific relevance for condensed
matter systems. At high temperature the dynamics of the
The phase space of an integrable Hamiltonian system iparticles is determined to a great extent by the repulsive hard
foliated in invariant tori; an orbit starting at a point on a toruscore of the interaction potential, making them behave simi-
remains forever on this torus, without diffusing on the hy-larly to hard spheres, which is a system believed to be quasi-
persurface of constant energy. Up to the early 1950s it wasrgodic. At low temperature, a solid may be represented by a
commonly assumed that an arbitrarily small perturbation oharmonic Hamiltonian, perturbed by nonlinear terms; such a
the integrable Hamiltonian would destroy the invariant tori, Hamiltonian is nearly integrable, and thus of the type re-
making the sistem quasiergodic. This belief rested on a theajuired by the KAM theorem for the existence of ordered
rem by Poincarél], resumed and completed by Ferfgl. = motions. These simple euristic arguments show that when
But in 1954 a famous computer experiment on a onethe energy of a generic condensed system is lowered, the
dimensional(1D) lattice, by Fermi, Pasta, and Ula(RPU) latter must undergo a transition from a chaotic, quasiergodic
[3], showed that a condensed matter system modeled by state, to an ordered, nearly integrable ¢6¢ The energy
harmonic Hamiltonian perturbed by nonlinear terms mayaround which this transition should occur varies from system
well not approach equilibrium, at odds with the traditional to system, and for most systems can be determined only
expectation. In later years a lively discussion has developedyumerically; moreover, the dependence of this threshold on
which still goes on, concerning the relevance of thosehe number of degrees of freeddidOF’s) remains an open
findings—and of many others similar in more recentquestion.
years—to the foundations of classical statistical mechanics. In 1977 a theorem by Nekhoroshg¥] introduced a new
The existence of partially ordered motions in regions of thepoint of view in the problem, giving it a different aspect. He
phase space of positive measure, which emerged from thehowed that even in the phase space region characterized by
FPU experiment, and was explained by the Kolmogorov-a quasiergodic behavior, a fraction of the dynamical DOF’s
Arnold-Moser (KAM ) theorem[4], questioned the equiva- of the system behave in a quasiintegrable way over times
lence of time averages and averages performed on a micrevhich may diverge for small nonlinearity. So another ques-
canonical ensemble. Numerical estimates showed that th#on was raised: provided the initial state of the system is in
region of ordered motions is of physical relevance, but theythe quasiergodic region, how long should one follow the tra-
could not answer the question of whether the measure of thigctory (in a real, or in a computer experimeir order to be
region would remain significant in the thermodynamic limit. sure to gather a good statistical result, independent of the
While some analytical evaluations gave a negative answer timitial conditions?
this last question, results of computer experiments seem to In recent years these problems have been put in a com-
point in the opposite directiofb]. prehensive framework, through the concept of a strong sto-
chasticity thresholdSST), a specific energy per DO, 8.
The phase space is separated by the SST in two regions: at
* Author to whom correspondence should be addressed. Electronignergies higher than the SST, the system is characterized by
address: tenenbaum@romal.infn.it a highly chaotic dynamicéAnosov-type diffusioy while at
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energies lower than the SST, the dynamics is very weaklyhe coexistence of ordered and chaotic DOF’s, we have de-
chaotic(Arnold-type diffusion. From this point of view, the cided to apply this diagnostic tool to a system studied before,
question in analyzing the dynamics of a nonlinear system i$1 order to interpret the results in the framework of a known

not whether the system is chaotic or not, but the followingphenomenology. In Sec. Il we describe the Hamiltonian sys-
one: how long does it take for the system to exhibit a chaoti¢em chosen as a model for the present work; in Sec. Il we
behavior? As a matter of fact, this time may be so long thatstudy the transition region between highly chaotic and highly
for all practical purposes, the system may be seen as order&gdered dynamical regimes. Sections IV and V are devoted
[9]. A second question concerns the dependence of this timi@ Coherence angles and their properties, and in Sec. VI we
on the size of the system. The definition of a SST allows arpeneralize this concept to a theoretical frame taking into ac-
analytical estimate of its dependence on the number ofount all Lyapunov characteristic directions—expanding and

DOF's for the FPU systerfi5]. The estimate indicates that contracting—in the tangent space. Sec. VIl is devoted to a

the SST should persist in the thermodynamic limit. This re—diSCUSSion of the “partial Lyapunov exponentsPLE's),

sult does not obviously give an ultimate answer to thewhich measure the rate of divergence of single DOF’s; in the
question—raised at the beginning of this section—>a1¢ section we show how to compute for each DOF a co-
concerning the relevance of an ordered dynamics for th erence time from the corresponding PLE, and its relation to

thermodynamic properties of a system. One should notd e coherence _angle. In Sec. VIII we summarize our method
however, that physics often deals with systems which ar nd the numerical results.

very small on a macroscopic scale, yet have a sufficiently

large number of DOF'’s to be treated statisticalyyg., clus- IIl. HAMILTONIAN MODEL

ters of particles, and macromoleculeBSor these systems one  Atomic lattices are systems which are suitable for a de-
can reasonably expect the macroscopic properties t0 be iRsjjeq study of ordered and chaotic dynamics. Their behavior
fluenced by the presence of persistent ordered motions, in@ys peen analyzed several years ago, and it has been found to

physically relevant low energy range. exhibit a neat transition from a chaotic to an ordered regime
The Nekhoroshev theorem and the existence of the SS{nen the energy is lowergd0,11. For example it turned

lead quite naturally to the expectation that different DOF's ;¢ that, in a 2D lattice, using a potential with parameters

may be end_owegl with different levels of chaoticity above theadapted to argon, the change in the dynamics takes place in a
SST, and with d|fferer_1t levels of order below the SST. In theenergy range corresponding to temperatures between 3 and
phase space, the region around the SST should be charactgy i [10,11]. A striking aspect of this transition was a break-
ized by the coexistence of ordered and chaotic DAfiese  gown at low temperature of the equipartition of energy
definitions are to be qualified by the time interval during among normal modes. The normal modes @ellective

which the system is observed, as asymptotically all DOF'S griaples which clearly manifest the change in the dynamical
should behave chaoticajlyThe coexistence of ordered and regime, and we have chosen them as an appropriate set to

chaotic dynamics in one and the same system was indeedy,qy the coexistence of order and chaos in a lattice with

; (6N

detected already several years ago. For example, the dyna%‘any degrees of freedom.

ics of a lattice at low temperature exhibits such a mixed |4 order to allow comparison with previous work0,11],

behavior if one describes it through the normal modesye have first chosen for the simulation a 2D system com-

[10,11. . o . posed ofN? particles of masM (N=8), arranged on a
Summarizing this introduction, we can say that a thor-gqare |attice with square cells of side surrounded by a

ough description of a dynamical system, both from mechanipgrder of fixed particles. Each particle is bonded to the four

cal and statistical points of view, requires the determinationy; st neighbors by a Lennard-JonésJ) potential:

of the level of order or chaoticity of each single DOF. If the

number of DOF'’s is low, one can use Poincarmaps and a\2 [g\8

auto-correlation and cross-correlation functions to character- V(r)=4e ?) —(?)

ize the dynamics of each DOF. But for systems with many

DOF's these diagnostic tools become impracticable. On thg/(r) has its minimum at o= 2%

other hand, the usual indicators of order and chaos | et ys denote by, andul,, the displacements from the

(Lyapunov exponents, fractal dimension, and spectral eMpice equilibrium position of the particle at sitd, i)

tropy) are of global nature, and do not give information ON (| m=1,8). The normal-mode coordinates are defined by

single DOF’s. One therefore has to resort to new diagnostic

tools.

_ , 2 N [ hal ) kam
In a previous short papdf2], we introduced and com- P=ce D Usin ——|sin —/,
puted coherence angledor Hamiltonian systems, which N+11m=1 N+1 N+1
measure in the tangent space the angular distance between N
any physically relevant direction, and the direction of maxi- y _ 2 2 W sin( ! sinl km
mum divergence of trajectories starting from very near = NT 1 1ty MTHAIN+L N+1/’

points. These angles can single out the DOF’s that are char-

acterized by the highest chaoticity, even above the SST. Iwhere h,k=1/N. To obtain the expression of the Hamil-
the present paper we give a full account of the properties ofonian of the system in these coordinates, we expand the LJ
the coherence angles, and show their connection with a set pbtential to the second order around the first neighbors dis-
coherence timesharacterizing each single DQE3,14. The  tance, and sum this contribution over all pairs of neighboring
main focus of the present work being the detailed analysis oparticles. The Hamiltonian now becomes
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MmN . _ For the system witiN=8 a Taylor expansion o+ and of
H:? > Q)2+ (0 a2+ (L) 2+ (wh a0 ] K. to the first order ind—r gives a critical valued,=r
h.k=1 —0.03, (see Appendix A for further details
+H', We have compressed the system to a value slightly above

d,. In this case the frequencies,,= oy, range from 0.0658
whereH' is the interaction Hamiltonian, which contains the to 8.4471, and the relevant variables are the 64 group ener-
whole coupling among modes produced by the interactiomies, where each group entails two modes of equal fre-
among particlegrestricted to the first neighborsand is neg-  quency:
ligible at low energywy, , o}, are the angular frequencies of

the normal modes: Eni= (G >+ (@) >+ (A *+ (0fnGkn) .
<o 4 . wh ) k We have used a standard central-difference algorithm for the
(@n) =37 Ke S'nszFKT Slnzm , numerical integration of the equations of motion of the par-
ticles, improved by one order in the computation of the ve-
k =h locities. A description of this modified algorithm is given in
(w%k)zzm KL sinszrKT Slﬂzm y (2) Appendix B.
We have explored the energy range frem0.2 to 0.002,
10V 1 1 where e=E/N? is the energy per particle. This range in-
K== — =48( 05— — _) cludes the transition region determined in Ré¢f0,11] for
rori, dé@ g the 64-particle system. In this range we have studied the
dynamics of the system at the energy values
92V 1 1 =0.2, 0.05, 0.02, 0.007, and 0.002; for argon, this corre-
KL=7 =48 13@—3-5@ : sponds to temperatures in the range 0.24—24 K. In most
d

simulations the total energy was initially distributed at ran-
dom among all particles; as a consequence it was distributed

We_have c0n5|de_red two different cases for the cell side at random among all normal modes. We have also performed
(i) dy=rg, which corresponds to zero pressure at zerg

; . some simulations in which only selected normal modes were
temperature. In this case;=0, and there are onlM distinct y

! : initially excited (see Sec. Il
X Y =
frequencies gy = wi,=wy) ranging from 0.3789 t0 2.1491 "~ "\yc'ave repeated our experiment for a 3D cubic lattice of

in !“] repluced unit§15]; the norma! modes are naturally g, particles N=8), with lattice parameted;; the normal
divided into N groups, each including =16 modes of oqeq frequencies of this system are the same as in the 2D
equal frequency. In terms of normal modes, the total energyaqe put the degeneration inside each group is 12 times
of the system may be written as the sum of the enerfjes higher (N2=192 modes per grolpthe temperature range

of each group of modes, plus the energy of the coupling du‘éxplored has been the same as in the 2D case.
to theH' term; here

N Ill. TRANSITION REGION
— - 2 2 - 2 2
Eh_gl [(Ahi)“+ (@h0Rh) “+ (k) “ + (@hGkn) “]- A. Generic initial conditions

. . . . In this section we analyze and complement previous work
In the following, the group energids, will be the variables  y,n6 o the transition region of our system, and show the
used to monitor the chaos-to-order transition in the lattice. INyerest of introducing new diagnostic tools suitable for gath-
fact, as described in Ref11], modes of equal frequency ering information on single DOF’s. In Reff11] the authors
exchange rapidly their energy, providing a good energy na\v;ed the transition region of the system studied here,
equipartition inside a group; thgrefore, the_energ|es of th%hoosing generic intial conditions by distributing the energy
groups become the relevant variables to evidence the breagt random among all the modes. They measured the energy

down of energy equipartition. _ o of each group of modes, and computed all correlation func-
(iif) Compressing the systend€r), one finds a critical

value of the side celtl under which some frequencies be- tons:
come imaginary, i.e., the corresponding modes become un- (Ei(t) = (EN) (Ej(t+7)—(E)))
stable: this depends on the effect of both the changés;in Gjj(1)= 5 =<
andK, . One has \/<(Ei(t)_<Ei>) )<(Ej(t+7')_<Ej>) )
K:=0 if r=ry, Ki<0 if r<ry, here () is a time average. The autocorrelation functions
exhibit a twofold behavior: a rapid exponential-like decay at
K.=0 if r<ry, K <0 if r>rq, short times(which dominates at high energyand a slow

decay at long timegwhich dominates at low energyThe
wherer¢>r is the value corresponding to the inflection transition between the two regimes takes place in the tem-
point of the LJ potentiali(;=1.2445r). So in the case where perature range mentioned in Sec. II. The threshold is differ-
r<ro orr>r; there exist some values bfandk such that ent for different groups, and is generally higher for groups of
wﬁk<0. Restricting our attention to the case withk<r, higher frequency. The computation of the mean energy of
(compressed lattige we have estimated for the side cell a each group of modes also allowed a check of the degree of
critical value corresponding to the onset of the instability.equipartition reached by the system. Decreasing the tempera-
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ture below 20 K, the system passes form a state where equi 0020 T | T
partition holds to states where equipartition requires increas:

ing times; at low temperature no trend toward equipartition is
visible. At the lowest energies studied the dynamics of the  g¢15
system is complex: a&=2x 103, the behavior of the mean
energies and of the cross-correlation functions highlights that
nontrivial selection rules exist which greatly favor the energy _
exchange between some groups, and strongly hamper th’
other exchanges. These particular channels of energy ex
change can be easily explained. In fact &b r, there are
exact resonances among the frequencies of the norme  0.005
modes:

0.010

01T 5= w7, 0.000

0.00 0.05 0.10 0.15 0.20

Wyt W= g, e

these resonances determine a preferred exchange among theFIG. 1. Spectral entropy of an uncompressed 64-particles 2D

resonant groups with respect to the others. Groups 3 and gystem with random initial conditions, as a function of the energy

which are not resonant, do not have an appreciable enerde" Particlee.

_exchange, so that their energies are almost constant. Inpregs-We have simulated the cubic system with lattice param-

ing the temperature the exchanges of energy become S'gmfé' rd, in three dimensions. In Fig. 2 we report the fraction
. l . .

cant also outside the channels of resonance, and at about &P the total energy of all groups @=2x 10" for the 2D

SKh?rfstﬁn(;hannels disappear and equipartition is reached InIgllttice ande=3x10 2 for the 3D lattice, both uncom-

The diagnostic tools described so far—correlation funcpressed. These specific energies corresponii-d.4 K for

tions and time dependence of mean energies—are useful hoth lattices, which exhibit at this temperature a slow trend

one deals with a system of few DOF’s, but become imprati_toward equipartition. It is evident that, at any given time, the

cable if the number of DOF’s becomes large. In order tc)Ievel of equipartition is higher for the 3D lattice than for the

have a synthetic description of the transition region, we hav Dt?{ﬂe' Weh can try fto understand this fact 2y c%nSIddenng |
computed the spectral entropy, defined by at the exchanges of energy among groups of modes depen

on the number of coupling terms among modes of different

(El(D)) frequency. In an uncompressed 28X N) lattice there are
H(t)=—2 pcInpe  wherep,= K . 2N? normal modes andN groups, each of B degenerate
k s (Ex(D)) modes; the number of coupling ternisf the third order
K between one mode and other modes of different frequency is
4AN3(N—1).

It is always positive, restricted between the value 0, when the In a 3D (NXNXN) lattice there are B® normal modes,
energy is concentrated in only one group, and the valuandN groups of ? degenerate modes each; the number of
Hmax=In N, when the system has reached equipartition andoupling terms between one mode and other modes of dif-
p=(1/N) Vk. It gives a neat information about the degreeferent frequency is B°(N—1). The ratio of the numbers of
of equipartition of the system, but it has an explicit depen-coupling terms—involving different frequencies—in the 3D
dence orlN. To compare systems with a different number ofand 2D cases is thereforéN8/4 (=144 forN=8). We can
distinct group frequencies, one introduces a normalized spethen infer that, for a giveMN and set of frequencies, in a 3D
tral entropy n(t) for random initial conditions, where the lattice the exchange of energy among different groups is

explicit dependence oN is removed: more effective than in a the 2D lattice, because of the much
higher number of coupling terms. As a matter of fact, this is
~ Hmax— H(t) what we found in the simulation by computing the spectral

7(H= H max entropy. In the 3D lattice we obtained valuesspfvhich are

quite a bit lower than those of the 2D lattice. So, for ex-

At equipartition the time average of is equal to zero, while ample, we found 7=2.5x10"* at e=0.02, and 7=
7=1 if all the energy is concentrated in only one group. 4.5x10 ° at e=0.03. The latter value must be compared

. e -3 : : _ :
The results obtained fp from the simulations of the 2D With #7=4.0x10" " found in the 2D lattice a¢=0.02, which
lattice, with random initial conditions, are shown in Fig. 1. COTrésponds to the same temperature.

~ We have also computed the maximum Lyapunov expo-
As expected, the values of decrease as the temperature nentA 1, which gives a measure of the rate of divergence in

increases;y first decreases almost exponentially, up 10 aihe phase space of initially nearby trajectories, and hence a
temperature corresponding to aboe=0.05. Above this  measure of the degree of chaoticity of a dynamical system as
value,  has a(slowly decreasingvalue near to zero. This a whole ¢, will be better defined in Sec. IV A positive
transition corresponds to the SST, which can be located beralue of\; means that trajectories starting from close points
tweene=2x10"2 and 5x 102 for this lattice. in |™ will diverge exponentially in time, which is character-
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FIG. 2. Time averaged fraction of the total energy entailed in eight groups of m@i& lattice with 64 particles and=0.02;(b) 3D
lattice with 512 particles and=0.03. The horizontal line corresponds to 1éRjuipartition.

istic of chaos. A zero value of; means that nearby trajec- (d=d,), and the 3D uncompressed system. We observe the
tories diverge linearly in time, which is characteristic for expected decrease with temperaturexef and also a non-

order.

In Fig. 3 we report\; vs the energy per DOF for the
uncompressed 2D systetne., d=d,), the compressed one
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FIG. 3. Maximum Lyapunov exponeit; as a function of the
energy per degree of freedom, for the 2D uncompres&édgnd
compressed systems-{, and for the 3D system< ).
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zero value at the lowest energy. This means that the system
is still in a weakly chaotic regime, even though the behavior
of {E,} shows that at this energy equipartition could be
reached only in exceedingly long times.

The compressed system is more chaotic than the other
two systems, as shown by the higher valuehgf this is
probably due to an increase of the anharmonicity of the po-
tential well “felt” by the particles, which more than com-
pensates for a possible weaker exchange among modes due
to the breakdown of the resonances among modes and
among groups of modes. The behaviomngfsuggests locat-
ing the SST in the energy region where the slope of a curve
N\, versus log changes: above the SST the slopexgfwill
be lower, as the system is strongly chaotic andchanges
less when the energy is raisggl. Here the change of slope
cannot be located exactly. One can only say that it takes
place betweere=0.02 ande=0.05, which agrees with the
range indicated by the curve of the spectral entropy. The
same figure shows the curve ®f for the 3D system. Here
the values of\; are always higher than those of the 2D
uncompressed system, as expected.
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B. Nongeneric initial conditions TABLE |. Exchanges of energy for different initially excited

The previous measures allow a guantitative estimate OgProups; the groups which receive energy are listed in order of de-
P q creasing average energg,). e=0.002.

chaos and order for the system as a whole. But in a nonlinear
system individual DOF’s may behave differently, and inter- Initially excited group

act with the other DOF’s through a very complicated pattern 1 2 3 4 5 6 7 8
of energy exchanges. This can be emphasized by setting the

system in an initial state where only a few DOF’s are ex-Groups 2 4 6 8 8 4 2
cited, instead of using a generic condition in which the enJeceiving 3 6 6 3 3
ergy is randomly distributed among all DOF's. By doing €nergy 4

this, the system is put in a phase space region of low prob-
ability density; nevertheless, this can yield interesting infor-
mation, complementary to that gathered in thenerig re-
gion of high probability density.

takes energy if we excite groups 2, 3, or 4 but, when ini-
tially excited, does not exchange with any other group; this is
.. . . an example of a phenomenon typical of nonlinear systems:
. I_n Ref. [.1.0] the transition region was analyZEd’ ChOOSIngthe self-trapping of energy. It was already known that there
initial c_ond|t|0ns where all the enerdywas given to modes _is a lower threshold for the energy exchange among groups
belonging to one and the same group. During the dynamicgich gepends on the initially excited groups: those with no
the time averagesEy,) of the energy of each group of initia| energy unlikely absorb energy from other grodipé].
modes, defined in Sec. Il, were monitored. It was found thafrgple | emphasizes a sort of diffused self-trapping of energy,
inside each group of degenerate modes equipartition Wagnd adds the feature of a high asymmetry in those exchanges.
reached quite fast, also at low temperature. Even when a group is excited whose frequency is in an exact

A parameten = (E™**—E™")/EM**was used to measure respnance relation with other frequencies, its energy does not
the oscillation of the energy of the initially excited group of flow to all the resonant groups. Instead, it may flow to groups
modes E™**andE™" denote, respectively, the maximal and which are not resonant. So, for example, the first column of
minimal energies attained by the initially excited group of Taple | shows that energy given initially only to group 1
modes during the evolution of the system. When O this  goes to groups 2, 3, and(@hich are not resonahtbut not
group does not share its energy with any other group, whilgo groups 5 and Awhich are resonant This behavior is
when\ =1 there is at least a time when this group has givertlearly due to the particular out-of-equilibrium initial condi-
all its energy to other groups. tions. For generic equilibriumlike initial conditions, group 1

A second parameteru=((E,)—(Ey))/(En), mea- would exchange energy mainly with the resonant groups 5
sured the deviation from complete energy equipartitionand 7, as shown in Ref11].
among modes. Hene’ andn” are the indices of the groups  The different response of the system to different nonge-
with, respectively, maximum and minimum time averagedneric initial conditions can also be seen also in the behavior
energy(E,). Whenu=1 there is at least a group of modes of the spectral entropyd and of \;. For initial conditions
which does not receive any energy during the whole simulawhich are not randonfiH ,,,,# H(0)], one uses a different
tion; =0 means that all groups share energy equally, i.e.normalization of the spectral entropy:
that equipartition holds. Small valuesXfimply large values
of w, but it can happen that both parameters are close to 1, Hmax—H(t)
when the initially excited group shares its energy with other n(t)= Hmax— H(0)
groups but not with all of them.

In order to determine the boundary between ordered and In Fig. 4, 7(t) is shown at the energiesx210 2 and 2
stochastic motion as a function of the specific enezgthe  x10 !, for two different initial conditions. At e=
behavior ofA and u was observed fixing a threshold at  2x 103, if only group 6 is initially excited,;(t) is almost
=u=3. The results show that the thresholds grow with theconstant and equal to its maximum, due to the absence of
frequency, except in the presence of resonances which cread@y energy exchange; if group 1 is initially excitegl soon
specific channels of energy exchange. The threshold energiesquires a low value, due to the existence of a substantial
found in this way locate the transition region in the sameenergy exchange among groups. At higher eneegy0.2,
temperature range mentioned before. the system tends to equipartition with both initial conditions,

Our simulation in two dimensions with cell side=d;  but it turns out that it needs very different times to relax to
shows that preferred channels of energy exchange exiséquilibrium. In the specific case, the relaxation timepf
which are dependent on the initially excited group; more-when group 6 is initially excited, is one order of magnitude
over, these channels are not symmetric. In Table | we repoitirger than the relaxation time found when group 1 is the
the results obtained a=2x10"3, which clearly show a only one initially excited.
striking strong asymmetry in the energy exchanges. If we Correspondingly,\(t) at e=0.002 assumes a higher
initially excite only group 1, the energy flows to groups 2, 3, value (chaotic dynamicsfor initial excitation of group 1,
and 4, but group 1 does not receive any energy if we excitand a lower valugéordered dynamigdor initial excitation of
any other group. The resonant groups 2-4-8 exchange energyoup 6 (Fig. 5. Both results forp and\; are in agreement
among themselves, but also with other groups. Group 3, on&ith the characteristics of the two groups reported in Table I.
of the nonresonant groups, receives energy when we initiallt the energye=0.2, A, soon reaches the same asymptotic
excite group 1, 5, or 8, but gives its energy only to group 6value, when only group 1 or group 6 are initially excited. At
when initially excited. Group 6, the other nonresonant onethis energy the dynamics of the system is chaotic,
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and the pattern of asymmetric channels which dominates thiging single DOF’s, which can also be used for systems with
exchanges at low energy is destroyed. many DOF's.

As a conclusion to this section, we can say that the be-
havior of the lattice in the transition region is highly inho-
mogeneous, and that a detailed analysis of the transition re- IV. COHERENCE ANGLES
gion requires an examination of the single DOF’s. The usual
indicators of order and chaos, on the other hand, are of glo-
bal nature, and give information only about the system as a We first briefly recall the theory of the Lyapunov expo-
whole. In Sec. IV we describe a tool suitable for characternents, and elaborate on it to introduce the new diagnostic

A. Dynamics in the tangent space
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1.5x 1073

1.0x 1073 § m

0.5 x 1073 i

A 0 T T T T
' (b) FIG. 5. Maximum Lyapunov exponent for

6.0 x 10~2 8 - pqhgeneric_initial conditionse: or!ly_g_r(_)up lis
initially excited; B: only group 6 is initially ex-
cited. (a) e=0.002.(b) e=0.2.
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40x10"2 | -

3.0 x 1072 ' ' ' .
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tool. LetR™ be a differentiablem-dimensional, compact and 1 (wi(t")]?
connected Riemannian manifold of cla@8. If xe R™, we cosa;= Iim?f — "
denote byT*R}' the normed tangent space W" in x. Let U0 w(t)]

®URM-R™ be a flow generated by the set of differential h ()(t) is th et WD) onTS. A ofi
ions<=f(x)" th : m TR" wherew is the projection of onTS. Asymptoti-
equationx=f(x); the tangent mapping i}, onto md);’ cally w(t)— ay(t) expiul) andw(')(t)—>a(l') exp(\.t), where
Oseleded 16] (also see Refl17]) proved that a base,
exists inTRY', such that

1 tlal(t)[?
tf| i | at’

1 coSa;=lim— —
I infd (e, | =) =X, (). et )
and eacha; represents an average angle between the sub-
The numbersy ,(x) are called the Lyapunov characteristic spaceTS and the maximum expansion subspdE§, are a
exponents, and give a measure of the rate of divergence fiixed characteristic of the system; the maximum expansion
the phase space of initially nearby trajectories(x) are not  subspace depends only on the phase space representative
necessarily distinct; we denote By;},<j<s the distinct val-  point, and oscillates—as will be shown below—around an
ues taken by ,(X)}1<,<m, and byk;(x) the multiplicity of  average direction irTSR;'}t). It follows that the CA’s have a
vi(X). We also letyj=v; if i<j. Then a theoreril 7] states  weak dependence on the initial conditions in the tangent
that there exist linear subspadds, . .. ,Hs, s=s(x) such  space and in the phase space.
that TRY=H,®---®Hg and dim H;=k;(x). If e#0, e The coherence angles provide a mean to single out those
eH;®H,®---®H; but e# eH;®H,®---®H;_;, then DOF's which are endowed with a higher degree of chaotic-
A(x,€)=v;(x). If in TR} one chooses a vecterat random, ity, characterized by a low value of the angle. By contrast,
then one may expect to find(x,e) =\ ;. From now on{v;} DOF’s characterized by a high value of the coherence angles
will be denoted by{\;}. have a high degree of coherence, and therefore require very
The first way to compute the Lyapunov exponent was tdong times to reach equilibrium. The latter DOF's are thus
follow the dynamics of two initially nearby trajectories, and responsible for a possible finite-time out-of-equilibrium be-
to study the evolution of their distance. Later a second wayavior of systems which are apparently at equilibrium—
was developed, in which the dynamics in the tangent spac@eing chaotic as a whole, as indicated by a positive value of
of the phase space was computed by linearizing the equa-1. There is, however, a problem in measuring accurately the
tions of motion. Ifx=f(x), xe ®™, the linear evolution of a degree of coherence of the most ordered DOF's, when the
tangent vectow e TR™, the tangent space i is given by number n of physu_:ally interesting DOF’'s becomes very
large. One can define a coherence anglaveraged on all
_ " gf, the DOF’s of the system, for which the relation aos
wi(t)zz —w;(t). =1/\n holds[12]. This implies that whem becomes large
=1 0%, the most coherent DOF’s are characterized by angles con-
) , - fined in a narrow range between and =7/2; they are thus
_ From the theorems mentioned before, there is a ba$e itsicylt to distinguish, even if they are endowed with very
in TR0y s_uch that_for_almost all initial con_d_ltlons the long yifferent degrees of coherencthis does not apply to the
time evolution ofw is given by a superposition of vectors, mgst chaotic DOF’s, which are characterized by low values
the coefficients of which are exponentials of the Lyapunovys the a;: therefore, their spread in the range @-may
exponents\, , increase whem increases In the following we will show
how to circumvent this problem.

S S

w(t)=2, a()e'=2) a(tjei  iehi=h(t)eM,

=1 i=1 B. Oscillation of the maximum expansion subspace
wheres=m, a=3|w(0)|c;(t)&, and this sum is done over Let A(t) be a function with zero time average
all éj characterized by the same expansion miateThe ma- 1
trices ¢(t) entail a possible time deriendence weaker than lim fj
the exponential one, and the rotation{ef} generated by the o
flow of the dynamics. One has I[rgmb(t) =a,(t) for almost

t
A(t")dt' =0;
0

there are two distinct possibilities for litn—o A(t): (i) ei-

all w(0). . ) tller the limit is zero, ofii) the function has no limit and
Let the phase space be decimposed_ into the direct sum gL jj|ates indefinitely between positive and negative values.
n subspacess,, Sp, ..., S, (n=m), which are physically 5, the other hand, ifiii) lim, ... 1AL |A(t))|dt' >0, one

interesting for the study of the systefthey can also be
single DOF’s. This phase space decomposition will induce
an analogous decomposition of the tangent spaae sab-
spacesl'S;, TS,, ..., TS,.

Thecoherence angle&CA’s) «;, i=1, ... nh, are defined Ai(t)=In m_
through ' cosB;(ty-1)

can be sure thaA(t) has propertyii).
Let us consider the function
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Here B;(t) is the angle at tima between a vector in the

tangent space and its projection on ftte subspacel § :
cosB()=[w(t)|/|w(t)].
We will now prove that

1 [t
Iim—f A(t")dt' =0.
tJo

—

One has cogi(t ) =exd Ai(t)]cosBi(t,_1) and

cospi(to),

;
cospB;(ty)= exr{ I(Zl Ai(ty)

which is equivalent to

wit)] [« } |w(ty)]
lwi(to)] —exp{ kgl At lw(to)] "

Taking the logarithm and dividing byr=TAt (At is the
time step of the simulationone has:

T

> Aty 1

1 0 |w;(t)] _ k=1
tr [wi(to)] T

i N [w(ty)]
tr |w(to)]

At

Asymptotically T>1, so that

lwi(1)]

IimEIn 7 =(Ai(1))y5 T lim—In M

et [Wi(to)] DAL Dot w(to)]

and hencex;=(A(t))(1/At)+\,, from which it follows

that (A(t));=0. From our numerical resuliSec. V D we

know that property(iii) holds. Therefore, propertgii) also

holds. One can conclude th&t(t), V i oscillates indefi-
nitely around zero. This implies that cBsoscillates around

its quadratic average value ces that is, that the angle be-

tween the vectow and the subspackS oscillates around a
mean value.
The tangent vector of the systen(t) follows the maxi-
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V. NUMERICAL RESULTS FOR THE COHERENCE
ANGLES

In this section we describe the results of the CA'’s relative
to groups of normal modes; they have been obtained from
numerical simulations at various energies for 2D and 3D
lattices, with lattice parameterd; and d, (uncompressed
and compressed latticeDifferent initial conditions were
used at a given energy both in the phase space and in the
tangent space. We have computed the dynamics of one tra-
jectory for each initial condition in the phase space, and used
the tangent dynamid@ssuming that the second one starts at
an infinitely small distange For the systems we deal with,
the equations of motion in the tangent space are reported in
Appendix C.

A. CA’s for the uncompressed 2D lattice

CA’s have been computed for different random initial
conditions, either in the tangent or in the phase space, at
every simulated energ§Sec. I). In Fig. 1 of Ref.[12] the
spectrum of the CA’s at three different energies was re-
ported. The CA’s show, as expected, a very weak depen-
dence on the initial condition in the tangent space: lowering
the energy, the maximum relative spread of their values in-
creases from 10° ate=0.2 to 0.04 ae=0.002. The depen-
dence on the initial point in the phase spde¢ a given
energy is stronger: the maximum relative spread increases
from 0.005 ate=0.2 to 0.08 aie=0.002.

The spectrum below the SSE£0.002) exhibits a varie-
gated structure where group 1 has the lowest CA and hence
is the most chaotic, followed by group 2, which has the
second lowest CA. On the other hand groups 3 and 6, which
have the highest CA’s, should be the most ordered; this re-
sult is confirmed by the behavior of the same groups found in
previous work[11]: their energies are almost constant. A
spectrum taken a¢=0.007 shows that group 3 has lost its
ordered behavior, and is now the third most chaotic group
after groups 1 and 2, while group 6 is still quite ordered.
Near the SST €=0.02,0.05) one observes a monotonous
increase of coherence with the frequency of the normal
modes: group 3 and 6 have lost their singular behavior. Rais-
ing the energy above the SS&«£0.2), we observe that all

mum expansion subspaeh, which oscillates around its av- normal modes have similar coherence, with the exception of
erage orientation. This point can be checked in the followingyroup 1, which still is more chaotic.

way. There are no prescriptions in the Lyapunov theory Besides the CA’s of the groups, we also computed the
about the norm one chooses in the tangent space, providegi's for the 64 pairs ofk andy modes characterized by the
there exists one. Hence we can choose a norm such that same frequency and by the same wave vecame indice$

'W(t)'ZZiE,- (807 + w3 897),

andk for wy, and w},, in formula (2)], and the results are
shown in Fig. 6. They agree qualitatively with those found
for the groups, but the spread of the values is reduced; the
average angle is of course higher, because of the higher num-

where 6q;; are the normal coordinates in the tangent spaceber of DOF's (cosr=1/\/64, a=83°). At the lowest energy
and w;; the corresponding frequencies. With this choice of(e=0.002), modes 1-8, which constitute group 1 in this
the norm we expect to minimize the oscillation characteristidattice, are definitely the most chaotic. On the other hand the
of the normal mode, leaving only the variation due to expan-CA’'s of modes 41-48 are the highest of the system and
sion in the tangent space. At low energy, where the normatearly equal, in agreement with the fact that group 6 is the
modes approximation is good, we find that the asymptotianost coherent and does not exchange energy with other

dependence dfv(t)| on time is of the forme1!. This means
thatw(t) belongs toH; therefore, the oscillations g8;(t)

modes outside the group, as its frequency is not resonant.
The CA’s of modes 17-24group 3, the other nonresonant

can only be due to the oscillation of the maximum expansiorone also fall in a narrow range. Raising the energyeto

subspaced; around its average orientation.

=0.02 the CA’s gradually increase with increasing values of
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90 T T

FIG. 6. Spectrum of the coherence angles for
the uncompressed 2D lattice at energies:
=0.002(1), e=0.02(2), ande=0.2 (3). i is the
index of pairs of modes characterized by the
same frequency and by the same wave vector.
The frequency increases withevery eight pairs.
The horizontal line corresponds to the average
anglea=83°.

@;

frequency, even though inside each group there are smaihodes the values of the CA’s are almost the same as in the
deviations from the expected trefd8,19. At e=0.2 the uncompressed 2D case. We remind the reader that we ob-
equipartition is nearly reached and we find that all CA’s areserved(see Sec. Ill a higher degree of chaoticity of the 3D

close to the average. lattice with respect to the 2D one. Indeed the resui?
>)\§D means that a vector belonging to the maximum expan-
B. CA’s for the compressed 2D lattice sion subspace expands with a higher rate in the 3D system

. than in the 2D system; this is not related to the CA’s, which

Compressing the system we destroy the exact resonances . )

. . . . are the angles between the maximum expansion subspace
among frequencies, as mentioned in Sec. Il A. In this case d the DOF sub d h ibuti f
we have 64 groups of different frequency, each of two modes" the subspaces, and measure the contribution o

f } each DOF to the chaoticity of the whole system.

(x andy) of equal frequency and equal wave vector; the The CA's are computed through the rafis; (t)]/|w(t)|
spectrum of the CA'’s gives at the same time a detailed cha P 9 : '

I .
o 2 o . To understand why the CA’s are nearly equal in two and
acterlzathn of all DOFs, and a synoptic view of the dynaml'three dimensions, one can suppose that the pace of evolution
cal behavior of the whole system.

In Ref. [12] we reported the spectra of the CA’s at two of w;(t) depends, besides their frequency, on the nurgper

different energiese=0.002 and 0.05. For this lattice the of anharmonic terms in the Hamlltonlan which involve
) . . modes of groug, while the pace of evolution ofv(t) de-
average angle isx=83°. At the lowest energy pairs 1-8,

which originate from group 1 of the uncompressed lattice pends on the numbgg of all anharmonic terms of the sys-

- e . . tem. For the purpose of comparison, the numlzgrandg
exhibit the lowest CA’s; the highest frequency pairs are the n be computed by considering only the third order terms in

o

moﬁtcﬁ%ﬁp t’O?‘:’Wixﬁggﬁj% gﬁ; Vk\llle J%?:dusgcu%iﬁ%i(ggtﬁe expression of the Hamiltonian in normal modes, which

gn @ y : g q y X give the highest contribution to the time evolution of the
of pairs centered around pair Nos. 40 and 56. The highe angent vectors
chaoticity of pair Nos. 40 and 56 may be related to the factt 9 '

) . o . For the 2D lattice each group entailiN2modes, andy;
0, i
that their frequencies are resondmfithin 0.4%) with the — 8N4(N—1)+ (2N)?, where the first term is the number of

ratio 3/2, which may lead to a strong exchange of energy. AE ; . .
- ; . o e hird order terms involving modes of the group and modes of
the higher energy pairs 1-8 still exhibit CA’s significantly any other groups whilegthe second ter?n ispthe number of

lower than the rest of the system, where the CA's are ver ird order terms inside the group. For the whole system one
near to the average one. The coherence angles show here t %{ group. Y

—(9N2)3 ; i
even in this highly chaotic regime the different DOF’s are asdg—(ZNd) ._FS;IIIQENB—Dlla—it—tI%eNE%Sh grouplent?:INé
characterized by different coherence levels. The spread @03253’361”1_3_ i ( / .) E) th) ; one 'a?\IONfig
the CA’s around the average angle in this system is Iower_( )" e ratio gi/g in both cases is[N( )

3 .
than in the uncompressed one. According to the results foun .1]/N _0'111; The fact that the two valqes are equal is a
for the Lyapunov exponenSec. Ilj, we can attribute this int that the CA’s may depend on the fraction of anharmonic

fact to a higher level of chaoticity of the compressed lattice®'MS mvolv_mg modes belonging to the corresponding sub-
with respect to the uncompressed one. spaceS besides the known dependence on the frequency.

In the case of the compressed 2D lattice, the CA’s are
quite different from the uncompressed case, as one can see
comparing Fig. 6 with Fig. 3 of Ref.12]. As a matter of

We have also computed CA’s for an uncompressed 3Dact, one findgy; /g=0.0154 for the compressed lattice, and
system ofN®=512 particles. The numerical results show thatalso for the uncompressed one, when the latter is described

for a given frequency(i.e., for a given group of normal by means of groups entailing only a pair of modes, as in

C. CA'’s for the 3D lattice
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FIG. 7. Spectrum of the coherence angles for
the uncompressed 2D lattice for nongeneric ini-
tial conditions.e=0.002; group 16) initially ex-
cited: & (+). €=0.2; group 1(6) initially ex-
cited: O (X). i is the index of groups of modes
characterized by the same frequency. The fre-
quency increases with
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Fig. 6. In this case, the difference between the CA’s of the VI. GENERALIZED COHERENCE ANGLES

two systems is clearly only due to the different frequency

The CA’s measure the angular distance between the vari-
ous DOF’s and the maximum expansion subsgdg¢eorre-
sponding to\ ;, and are well defined asymptotically. But in
the medium time, the evolution of a tangent vector and of its

The results obtained for the functigk(t) introduced in  projections on the DOF subspaces depends on its position
Sec. IV B show that the averaggd\(t)|) V i are well sta- relative to all the subspaces; , corresponding to the whole
bilized in the course of the simulations, and that they areset of Lyapunov exponents. In condensed matter systems the
always positive at all the energies studied; furthermore, théyapunov spectrum is smooth: the exponents following the
(|Ai(t)]) are different for differeni. We can conclude that first have values slowly decreasing from the maximum one
the maximum expansion subspace of each DOF oscillates i20]. As the chaoticity of a DOF increases with its angular
the tangent space of the hypersurface of constant energy. TiéOXimity in the tangent space to a rapidly expanding sub-
amplitude of this oscillation is different depending on theSPace, it is clear that one should also consider the subspaces
subspacd'S on which we project the tangent vectant). H; corresponding to expansion coefficignts _just bel)oy\(
Raising the energy, the differences among amplitudes corrdvore generally, one can expect the medium time behavior of

sponding to different subspaces increase and decrease in &/POF t0 depend on its angular distance fronsallibspaces
irregular way, while their average increases. .Hi correspond_mg to Lyapunov exponents, whether expand-
ing or contracting.

In Ref.[14] it has been shown how the coherence char-
acterizing thelth DOF is the result of this medium time
In this last subsection we briefly report the results ob-behavior, i.e., the behavior of")(t) beforew(t) is defi-

tained by exciting only one group at a time, in the uncom-njtely oriented along the; direction, and hence the expan-
pressed 2D lattice. In Fig. 7 the CA’s at the energées sion rate ofw(")(t) also has reached the valng. In order to
=0.002 and 0.2 are reported for initial excitation of group 1determine the behavior of("(t), one should compute the
or group 6. At the lowest energy group 1, if initially excited, angles between each DOF and each subspace characterized
is the most chaotic and from Table | we know that it gives itsby a Lyapunov exponent, but this is not easily practicable as
energy mainly to groups 2, 3, and (the intensity of the one should exactly know the dynamics of these subspaces.
exchange decreases in this opdefhe CA's are indeed Alternatively, one can use an orthogonal set of vectors
found to be increasing in that same order. If we excite grougVk} k=1, ... m, which expand with the Lyapunov expo-
6, according to Table | the exchanges with other groups ar@ents{\,} (see Appendix D for more detajisLet {v,}, k
very weak, and hence the CA'’s are very high. Obviously the=1, . . . /m, be an orthogonal set of vectors of the tangent
lowest angle in this case is just that of the sixth group, whichSPaceTR}’ such that eaclv,(t) expands(or contract as-
turns out to be even lower than that of group 1, when theymptotically with the Lyapunov exponent: Vv(t)
latter is the only group initially excited. At the higher energy = Uk(t)Vi(0)e*', whereu,(t) is a unitary matrix describing
the two different initial conditions give nearly the same re-the (possiblg rotation ofv,. The generic vectow of the
sults. We note that the resulting CA’s are quite similar totangent space can be initially decomposed in a sum of vec-
those obtained for random initial conditioias shown in tors lying along the vectorg,,

Fig. 1 of Ref.[12]): when equipartition holds the system is in

a state which is no more sensitive to the initial conditions.

The results of this subsection show that the CA’s can provide m m

a detailed informe}tion on the.pe_havior of the system also w(0)= 2 [W(O)'QK]QKEE Wk(O)Qk,

when the latter is in a nonequilibrium dynamical state. k=1 k=1

spectra.

D. Oscillation of the maximum expansion subspace

E. Nongeneric initial conditions
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m

wherev,=v, /|v,(0)|. As the equations of motion in the tan- 5
>, WE(0)cog ayq(t)e?t

gent space are linear, its asymptotic time evolution can be

written as A D)= %In k:lm
>, Wi(0)cos ay(0)
m m k=1
W('f)=k21 Wk(o)\’}k(t):kzl Wi(0) U (t)Vy(0)eM, The complete set of angldsy,} characterizes completely

the time evolution of all subspaces of the tangent space, but
the computation of X m terms can become a heavy task for

m 12 large systems. In addition to the computational burden, using
S w2(0)e?M the whole se{«,,} would make it impossible to take advan-
lwt)| [E K ot tage of the synoptic view provided by a single coherence
lw(0)]| = m =e"e. spectrum, the one entailing only the angles with the most
2 wﬁ(O) expanding subspacgl2]. Fortunately, the tangent space
k=1 seems to be structurated in such a way that the angles be-

tween a generic tangent vector and the most expanding di-
In this way for the vectow one defines an effective expan- rections have similar values, and the same holds for the most
sion coefficient ¢, which depends on time and on the initial contracting ones. By this we mean that the projection of a
conditions: tangent vector on a subspace characterized by a given

Lyapunov exponent turns out to be very similar in magnitude

to the projection on another subspace characterized by a

m Lyapunov exponent similar to the previous did].
E WE(O)GZ)\kt Moreover, the values of the projections on the most ex-
k=1 panding vectors are grouped together, well distinct from val-
Ne()=ZrInf —f—|. ues of the projections on the most contracting ones. If one
E wﬁ(O) assumes this to be a generic property of condensed matter
k=1 systems, the CA’s defined in R¢1.2] should also be indica-

tive of the angles the DOF’'s make with the subspaces la-
Unless the initial direction ofv(0) lies along a specific vec- P€led by the Lyapunov exponents closely following the first
tor v, of the basgw,(0)=&,w(0)], its evolution will be (maximum one; they should thus entail the relevant infor-

influenced by all Lyapunov exponents, and eventually only™ation on the degree of chaoticity, due to the angular dis-
by \;. tance from the most expanding directions.

One can now use for the vectovs a decomposition on

the orthonormal set w(") of the DOF's: v(t)
=31, W cosay(t)e™, whereay, is the angle between vec- In Sec. IV A we observed that when the number of DOF’s

tor \7k and the subspacEs, corresponding to théth DOF n becomes very large, the average @Aincreases toward

or set of DOF’s. Using the previous decompositiomofone /2 (because cas=1/\/n), and it is difficult to distinguish
finds between the most ordered DOF’s, even if they are character-

ized by very different degrees of coherence. Moreoveg as
depends om, it would be difficult to compare coherence
m nom properties of systems with different numbers of DOF's.
_ A At ol Hence we have looked for a new tool independentnpf
W(t)‘k; W"(O)Vk(t)_;l k; wi(0)cosayq(t)e™w physically meaningful and entailing relevant information on
N the medium time behavior of the DOF’s.
ZE WO The natural starting point is given by the effective expan-
=1 (OWH, sion coefficients AS)(t); as shown in Sec. VI, they
synthesize—for each DOF—the effect of all expanding and
contracting directions of the phase space. As shown by for-
mula (3), \{)(t) characterizes the rate of divergence of the
Ith DOF for nearby trajectories, in the same way\aét)
does for the total divergence of the trajectories.
In analogy with the Lyapunov exponents, one defines
PLE’s for single DOF413|:

VII. COHERENCE TIMES

wherew(" is the projection ofw on TS . The asymptotic
time evolution of the component @f(t) on thelth subspace
can thus be represented through

W]

0}
=ele UL, (3
lw(0)| o 1w
AO=limAD(t)=lim=In ————.
| - ot w(0)]
This defines\{)(t) as an effective expansion coefficient
for the Ith subspace of DOF’s, which depends on time andFrom now on we drop the subscriptin the effective ex-

on the initial condition: pansion coefficienta\) From the theorems quoted in Sec.
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IV A, we can conclude that"=x; V | even ifA()(t) may TABLE II. Coherence times; of the groups of normal modes,
differ substantially from\,. This difference, and the time at specific energyg, for the 2D uncompressed lattice.

needed to reach the regime whex&)=\,, characterize
each DOF. The valua ()(t) gives information about the e 0.002 0.006 0.02 0.2
instantaneous exponential rate of expansion, which may =

be—before the relaxation—Ilower or higher than that of the 72 —3% —130 —29 12

whole system. Hence we could have characterized each DOF 72 808 346 135 26
by the inverse of the average valuexdP(t), like N, * char- 3 2982 787 222 25
acterizes the total system. As the medium time expansion of 7, 3186 1109 338 25
w)(t) is not an exponential\!’(t) alone is not a good o 3079 1100 428 27
characterization of théth DOF. On the other hand,((t) ~75 4776 1405 512 o7

. - 6
— N\, almost anywhere in the tangent space, but the tifne - 2878 1168 493 25

after which\()(t)=\,, that is the time the DOF needs to 7
reach the asymptotic expansion rate of the whole system, is 7s 3333 1383 534 29
difficult to determine, as there is not a neat transition to the 1

asymptotic behaviof14]. A way to characterize a DOF tak- M 1563 560 231 24
ing into account both these quantities could be to compute
the area of the region betweaf)(t) andx (t). We made an . . . .
attempt to compute various quantities related to this are gasny compu_table, and the precision of this measure in-
Unfortunately it turned out that all these quantities weret'€ases with increasing averaging tinis]. ,

strongly dependent on the initial conditions, making any,. A hierarchy of coherence amang the DOF's can be estab-

characterization of a pattern among DOF’s impossible, eveHShed by computing, during the dynamics, the vertical dis-

iné i -
when we knew from previous results that there was One‘fances between each liné)t and the linekyt, and averag

Moreover, in order to compute this area, one would have tdng on time. The h_onzon_ta_u _dlstances, .Wh'ch we aiie
integrate in time from O toe, which means that one has to shifts are then obtained dividing the vertical distances by the

introduce a cutoff. In order to be meaningful, the result of thedVErage common slope,:

computation should have a good stability when the cutoff is

varied in the region following the relaxation. On the con- 1 1t |w(t)] Wt
trary, we found quite often that the integral was not conver- T,=)\—I|mfj |n|w(0)| —In 0 !
gent and had a strong dependence on the cutoff. It " J0O (wH(0)]
Nevertheless, by observing the behaviorxd(t) vs t, )
one can understand the approach to relaxation of each DOF. — ilimljt In lw(t")] In [w(0)| ,
In Figs. 1 and 2 of Ref.14] we gave the results obtained for Mestlol wht)] w0
some groups of DOF's a&=0.2 and 0.002. We reported
1 <|p'W(')“')'> w00

lw(t)] N1 lw(t")] . lw(0)|

———=ta (1)

lw(0)]

1
=— A_1(<In|cos[3(')(t’)|)t— InjcosBM(0)]).  (4)

vst, so that the slope of the curves gav@)(t); the curves

had been smoothed by coarse-graining values on a mOViﬁgere,B(') is the angle between tHe¢h subspace and the ge-
interval rgnging over several periods of the norma_l mOdeSneric vectorw. The first term in Eq(4) has good conver-

At the highest energy, where the whole system is in theyence properties, like the coherence angles; but the second
chaotic regime, all subspaces behave alike, and the curvgsim in Eq.(4) depends strongly on the initial conditions in
corresponding to.()(t) are fairly similar to the global one {he tangent space, and may be large. One can get rid of the
relative to\(t), an almost straight line with slopey; still, a dependence on the initial conditions by averagjmg over
small but definite difference among DOF's is evident. At thernany differentw(0). We have computed, of all subspaces
lowest energy this difference is more visible, and one cany; yarious specific energies; each value is an average over 15
observe a differentiated behavior of the DOF'’s, typical for ajnitial conditions in the tangent space. For large enough

partially ordered dynamics. , times, the expansion rate of the distance for initially close
In the case where the distinction among the DOF's is Welkrajectories is\,; a negative(positive time shift means that

defined, one can suppose that for each group atifnexists  the corresponding DOF’s difference between initially close

up to which\((t) evolves tox;, while X'(t)=\; when  trajectories reaches a fixed level of expansion a timbe-

t>t|* . The real situation is far from being SO regular: thefore (afteﬂ the whole system, i.e., the DOF is more chaotic

time ] is not easily identificable, and one cannot define ancoherent than the whole system.

average slope in the interval @~ On the other hand, the 7; can also be written

distance between the lines\()(t) and tA(t) oscillates

around its average value whénr-c. This distance is the 1 1t

result of the combined effect of the difference between each n=— lim _f t'[Nt)=ADt)]dt,

AD(t) and A (t), and of the timetf needed to relax; it is Ao to
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and coincide with the “coherence times” defined in a previ- tence of other ordered DOF's.

ous work[13]. However, from the numerical point of view, The results shown in Sec. lll stress the need for a new
the two formulas are not equivalent, as the latter way ofdiagnostic tool suitable to give a measure of chaos and order
computing enhances numerical errors at short and longf the single DOF’s. This tool—while being easily comput-
times. At short times the time-dependent Lyapunov expo@ble and stable—has to be of p_ratical use for systems with
nents are numerically ill defined; at long times the differenceMany DOF's, and at the same time allow a detailed charac-
between all partial Lyapunov exponents and the total onderization of single DOF's and a synoptic view of the dy-
goes to zero, and is multiplied by a diverging time. Thesg@mical behavior of the whole system.

effects are so large that an interpretation of the results be- N Sec. IV we defined coherence angles through a geo-
comes difficult; on the other hand, computing the integrancgetr'cal analysis that relates the dynamical behavior of a

: . ; OF with its angular proximity to the most expanding direc-
g,:;%?gg formula(4) gives well defined results at all energies tion in the tangent space of the phase space of the system. In

. , . Sec. V we showed that a small angle characterizes the most
In order to make a comparison among DOF’s belongin

to diff t stat f t o diff " " Y%haotic DOF'’s, while more ordered DOF’s have directions
o dinierent states of a system, or 10 different Systems, ong,q, apart from the one characterized by the highest

also has to incllude_tlhe typical scale of phaoticity of eaChLyapunov exponent. CA’'s were defined and measured as
whole system, i.ex; 7 therefore, we define @oherence .oy mniotic quantities; on the other hand, the short and me-

timeas7=(\;) "+ 7. In Table Il we report ther; of the  djum time dynamical behavior of the system is influenced by
groups of normal modes at four different energies. Someill the Lyapunov directiongexpanding and contractihgTo
coherence times; turn out to be negative, which is due to a take into account this broader set of factors affecting the
negative time shift;, whose absolute value is larger than the evolution of each DOF, in Sec. VI we generalized the defi-
average expansion rak§ *. This means that the correspond- nition of coherence angles. It turns out that there exists a
ing group of normal modes reaches a given level of chaoticparticular disposition of the expanding and contracting
ity in advance ofi 7| with respect to the system considered Lyapunov vectors which could result to be a generic property
as a whole, of course this is only meaningful for times largerof condensed matter systems. As a consequence of this dis-
than|7|. The coherence times increase, as expected, whdppsition, CA’s deliver most of the information which could
the energy is lowered and the dynamics becomes more ope obtained—with a much heavier computational
dered. If one excludes the value at the highest enemy (burden—by explicitly computing the generalize_d cqherence
=0.2), the other points show a dependence on the specifigngles between each DOF and all Lyapunov directions.
energye which can roughly represented by a law-e 7, The information provided by the DOF'’s for the square

with 0.8<7<1.1, depending on the group of normal modes lattices studied here shows that in the transition region dif-

The coherence time of a DOF gives the order of magnitud.é\erent DOF’s may have quite different degrees of chaos. This

of the time that this DOF needs to relax to equilibrium, in IS an important problem, not only from a theoretical point of

analogy with the timeX ;) ~* characterizing the relaxation of view, but also for the reliability of numerical simulations.

the whole system. The results shown in Table II, which en_When simulating equilibrium properties of a real system, one

tail the whole dynamics in the tangent space, are in agre should ascertain that the simulated system is endowed with

ment with those obtained by computing the CA’s: group 1 is he required equilibrium dynamical pr(_)per_ties. _In molecular
always the most chaotic; on the other hand, at high energ ynamics computer experiments, equilibrium time averages

group 8 is the most choerent one, while at low energy it is re assumed to be equivalent to ensemble averages. This is

group 6, as expectdd2]. These resuls seem thus to confirm e [ 87 POF * Behave fracieaiy, Sue B e STer .
that the hierarchy among DOF’s obtained by considerin o not depend on the initial state of the sir?lmlation giul,
only the maximum expansion subspace, i.e., that given b P )

the CA’s, is representative of all the most expanding direc—troS&gsvﬁﬁeﬁnmuen;;rmngS?argg;?g d?/;ag:tli?s n;fitgﬁng q
tions, as advanced in Sec. VI. 9 prop

model systems. As an example, one can take the specific heat
at a constant volume of a Lennard-Jones crystal, measured in
a system at constant energy through the fluctuation of the
Vill- CONCLUSION kinetic energy[22]. This quantity shows an absurd behavior
Computer experiments on the dynamics of condensedt low temperaturépositive and negative divergencevhen
matter systems show a complex structure of the phase spacemputed over typical average times, which are usually suf-
in the region of the transition from chaotic to ordered behav{icient to compute this same correctly quantity at higher tem-
ior. The results of Sec. lll locatén the energy rangethe  peratures. This happens because, due to the increase of order
transition region for 2D and 3D square lattices, and providén the low energy dynamics, the fluctuation of the kinetic
insight into its dynamics, characterized by the coexistence oénergy relaxes to its expected value over times which may be
ordered and chaotic patterns. This coexistence leads to a prorore than two orders of magnitude longer than the tipical
nounced asymmetry in the behavior of different DOF’s,ones[23,24]. How can one be sure that the system at hand is
clearly visible in their energy exchange regime. The use of'statistically correct,” that is, that time averages are equiva-
nongeneric initial conditions, where only a few DOF’s arelent to ensemble averages? One obvious requirement is that
excited, reveals a difference in the dynamical behavior othe averages be computed over times which are significantly
different DOF’s which extends from a region of weak chaosgreater than the time needed by the most ordered DOF'’s to
into a region of strong chaos, where a global chaoticity—dueelax to equilibrium(which may become impossible at low
to the presence of some chaotic DOF's—may hide the exisenergies
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In order to obtain a physically meaningful quantity, in  If wpceRe,
Sec. VIl we introducedoherence timesyhich give a mea-
sure of the time each DOF needs to relax to equilibrium. Our 107 _ 17 _
tools have been used to analyze the dynamics of simple mi- fjo u;;(1)dt=0 because?fo dnk(t)dt=0.
crocrystals, as an example of Hamiltonian systems with
many DOF’s. Results for 2D and 3D Lennard-Jones latticesf w,,, e lm,
show that at high temperature all DOF’s tend to the same
level of chaoticity. On the other hand, at low temperature we 1(7 1(7
found a nontrivial structure of the spectrum of CA’s and of ?jo uj;(H)dt#0 becausefjo Onk(t)dt#0.
coherence times, indicating the coexistence of DOF's en-

dowed with quite different degrees of chaoticity; and the | the first case the particles oscillate around their stable
relaxation times of the various DOF's seem to increasequilibrium position. In the second case they do not remain

roughly with the inverse power of the specific enesgy around their(nonstablg position, but move to a new stable
We will apply the diagnostic tools described in this paperposition.

to other condensed matter systems, e.g., molecules, to ana-
lyze their dynamics. A relevant question will be the spectrum
of coherence times, and its dependence on the specific en-
ergy. We believe that the main features of the transition re- In this appendix we give a description of the modified
gion found in the 2D and 3D square lattices are quite genericentral difference algorithm we have used in our numerical
for condensed matter systems at low energy. On the oth&imulations. Ifr, v, and M are the position, velocity, and
hand, the spectrum of the coherence times may well exhibinass of a generic particle, respectivefithe force acting on

APPENDIX B

features which are specific to each system. it, and h the time step in the integration of the equations of
motion, then
APPENDIX A
h? he .
An intuitive explanation of the instability can be obtained ~ r(t=h)=r(t)hv(t)+ 5= F(t) =& —F(t)+0(h?).
as follows. Expanding{; andK, to first order ind—rg, one (B1)

finds that @ \)*= (@) 1)?<0 when
The standard central difference algorithm is obtained sum-

fo—d =>tarf (A1) ming and subtracting the two equatiofi&l), obtaining:
ro 2(N+ 1)

2
These two are the first frequencies which become imaginary. r(t+h)=—r(t—h)+2r(t) +M F(t)+0O(h%),
For N=8 the maximum compression allowed before the lat-
tice becomes unstable correspondsiter ,—0.03 .
Looking at the displacements of the particles induced by
the two modes of frequency?yand oy ,, for N=8 one 2h
derives:

= w.,.o(hZ) (B2)

With such an algorithm the velocities are known with a pre-
] cision lower by two orders of magnitude in the time step than
9 (A2)  that of the positions: this is not a problem for the dynamical
evolution of the system, but it may affect the computation of
2 _ i 7] therquynamical guantities. o N
uy :§(—1)'+1q§1(t)s|n? sin g~ (A3)  To improve by one order the precision in the velocities,
instead of Eqs(B2) we used

2 . i
u =5(- 1! Tlg¥g(t)sin % sin

Along each horizontal or vertical row, particles have lon- h2 3
gitudinal displacements of the same sign, and transversal dis- (t+h)=r(t) = hv(t) +ont F(t) + F(t) +0(h%),
placements of alternate sign. Alternate rows have longitudi-
nal displacements of opposite sign, and therefore tend to slip
with respect to each other. This instability is due to the in-
teraction being limited to the first neighbors, and is hindered
by the fixed particles of the boundaries. Therefore, the maxi-
mum allowed compression diminishes when the size of th&€€ombining these equations we obtain
system increases, as shown by form(Ad).

In general one can write

h? h3
hv(t—h)= hv(t)——F(t)+ F(t)+0(h4)

1[3 h?
v(t)zﬁz(r(t) r(t—h))——hvt—h)+ F(t)
krj
N+1

hri
N+ 1 sinl ——— +O(h3)
where The improvement in the computation of the velocities, and
thus of the kinetic energy, enhances the conservation of the
Onk(t) =ApRe expi( wnt + on 1- total energy during the time evolution of the system.

2
ujj(t)= N+1 4 E Ohk(t)sint ———
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APPENDIX C v [ X(t 2 ,
ami0= 3 4| v ) s
The explicit calculation of the equations of motion in the Ximn(t) Ny r r
tangent space of a Lennard-Jones lattice is rather cumber- . ,
some. Here we give only the final equations for the 2D and vy v X(t) y(t )éy(t)+ (_)52(0
3D lattices, also in order to show the numerical burden that T
the tangent dynamics introduces in the simulation. For the _ )
2D lattice we have L Vv V' -
M= 2 || V'= || 7] + |
~ 2 I”,m’,n’
Fim(t)= S, H(v w)(x“)) 2 sa VIO RO o EW
im )_I,’m’ r)\r | XM + V- )yr — SX(t)+ +— oz (t)”
RAFGEI
Vv ——)——é\/(t)}, . z(t) V’ -
r r r 5zlmn(t) 2 - 5Z(t)
U r r
AWAY 2 ’ A X(t) y( )
. V' [ y(t) V' - n_ |22 LA
OYim(t) = 2 {{(V”_T)(T +T oy(t) +<V r ) r &((t) W(t)H
I m’
LV Y (D)
V= T) - Tﬁx(t)}, APPENDIX D

where V' =

potential of formula(1)], and the sum is over all the par-
ticles. (,m) are the indices of a particledx,,(t) and

Syim(t) are the tangent coordinates of particleng); X
=Xim=Xi'm'» Y=Yim—Y1'm» andr is the distance of par-
ticle (I,m) from particle (’,m’); X= X;n— X,y and

For the sake of simplicity we restrict our discussion to a

nondegenerate Lyapunov spectrum, so that each véptor
corresponds to a differen; ; the extension to the case of
degeneracy is straightforward. Let us decompose each vector

of the set{é} (i>1) into two components, one parallel and
one orthogonal t@; (the maximum expan5|on d|rect|))ra

=e,+6,0, i=2,...m with & ,=(e;-6)&, and & ,=§

dv/dr, V"=d?V/dr? [V is the Lennard-Jones

~ “Gp
Y= 0Yim— Nirm - Let us write the tangent vectev(t) using this decompo-
In three dimensions the equations are sition:
w(t) = ci(t) exp(A + > ck(t) exp(Axt)(€rp + €r0) =
k=2
= &) |c1(t) exp(A crexp(Ait)(8 - ex)| + ) erocrexp(Mit) =
1 1 ,g }ZQ T
ai
m
= Z gV,
k=1
|
where The coefficienta, of v, grows asymptotically like
1 1 1 exp(\,t). We can now decompose eaeh (k>2) into two
I|m—In a;= I|mfln ciexpht)=Ilim—Inc;+A; =X\, components, one parallel and one orthogonai,to
- t—o t—o Iterating this method for eachy, we obtain w(t)
1 =31 3V, where
Iimflnak=)\k, k=2,...m o
t—ow V1: el,
and . V6
~ V2=e2_#vl,
V1=el, Vl'vl
Vi = , k=2,...m ~ A ~ A
k= 8o L. Ve Voo
V3=€— =—=Vi— ==V,

Eachv, (k>1) is orthogonal tce,. ViVi VeV
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~ o Vi€~ V€. V3 €
Vy=€— == Vi— == Vo~ =—=V3,
Vi-Vi Vo Vo V3-V3

and lim__(1/)Ina:=\V k, eacha, being a linear combi-
nation of expk;t) (i=K). In this way we have constructed a

set oforthogonalvectors{v,} in each tangent spad&Ry ;
the vectors evolve asymptotically with rates given by the set
of Lyapunov exponenté\;}.
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