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Coherence measure in Hamiltonian systems with many degrees of freedom
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We study the phase space region of two- and three-dimensional lattices where a transition from chaotic to
ordered dynamics takes place when the energy is lowered. In this region we find coexistence of degrees of
freedom~DOF’s!, endowed with different levels of chaos. The analysis of this complex dynamical pattern
requires the introduction of diagnostic tools suitable for a characterization of single DOF’s: coherence angles
and coherence times. We find that the coherence times—which give a measure of the time each DOF needs to
relax to equilibrium—are roughly proportional to the inverse of the specific energy. This may be useful to
evaluate the reliability of statistical results obtained in computer experiments performed on condensed matter
systems at low energy.

PACS number~s!: 05.45.2a, 63.22.1m, 63.70.1h
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I. INTRODUCTION

The phase space of an integrable Hamiltonian system
foliated in invariant tori; an orbit starting at a point on a tor
remains forever on this torus, without diffusing on the h
persurface of constant energy. Up to the early 1950s it
commonly assumed that an arbitrarily small perturbation
the integrable Hamiltonian would destroy the invariant to
making the sistem quasiergodic. This belief rested on a th
rem by Poincare´ @1#, resumed and completed by Fermi@2#.
But in 1954 a famous computer experiment on a o
dimensional~1D! lattice, by Fermi, Pasta, and Ulam~FPU!
@3#, showed that a condensed matter system modeled
harmonic Hamiltonian perturbed by nonlinear terms m
well not approach equilibrium, at odds with the tradition
expectation. In later years a lively discussion has develop
which still goes on, concerning the relevance of tho
findings—and of many others similar in more rece
years—to the foundations of classical statistical mechan
The existence of partially ordered motions in regions of
phase space of positive measure, which emerged from
FPU experiment, and was explained by the Kolmogor
Arnold-Moser ~KAM ! theorem@4#, questioned the equiva
lence of time averages and averages performed on a m
canonical ensemble. Numerical estimates showed that
region of ordered motions is of physical relevance, but th
could not answer the question of whether the measure of
region would remain significant in the thermodynamic lim
While some analytical evaluations gave a negative answe
this last question, results of computer experiments seem
point in the opposite direction@5#.

*Author to whom correspondence should be addressed. Electr
address: tenenbaum@roma1.infn.it
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These questions are of specific relevance for conden
matter systems. At high temperature the dynamics of
particles is determined to a great extent by the repulsive h
core of the interaction potential, making them behave si
larly to hard spheres, which is a system believed to be qu
ergodic. At low temperature, a solid may be represented b
harmonic Hamiltonian, perturbed by nonlinear terms; suc
Hamiltonian is nearly integrable, and thus of the type
quired by the KAM theorem for the existence of order
motions. These simple euristic arguments show that w
the energy of a generic condensed system is lowered,
latter must undergo a transition from a chaotic, quasiergo
state, to an ordered, nearly integrable one@6#. The energy
around which this transition should occur varies from syst
to system, and for most systems can be determined o
numerically; moreover, the dependence of this threshold
the number of degrees of freedom~DOF’s! remains an open
question.

In 1977 a theorem by Nekhoroshev@7# introduced a new
point of view in the problem, giving it a different aspect. H
showed that even in the phase space region characterize
a quasiergodic behavior, a fraction of the dynamical DO
of the system behave in a quasiintegrable way over tim
which may diverge for small nonlinearity. So another que
tion was raised: provided the initial state of the system is
the quasiergodic region, how long should one follow the t
jectory ~in a real, or in a computer experiment! in order to be
sure to gather a good statistical result, independent of
initial conditions?

In recent years these problems have been put in a c
prehensive framework, through the concept of a strong
chasticity threshold~SST!, a specific energy per DOF@5,8#.
The phase space is separated by the SST in two region
energies higher than the SST, the system is characterize
a highly chaotic dynamics~Anosov-type diffusion!; while at
ic
4809 ©2000 The American Physical Society
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4810 PRE 62D’ALESSANDRO, D’AQUINO, AND TENENBAUM
energies lower than the SST, the dynamics is very wea
chaotic~Arnold-type diffusion!. From this point of view, the
question in analyzing the dynamics of a nonlinear system
not whether the system is chaotic or not, but the followi
one: how long does it take for the system to exhibit a cha
behavior? As a matter of fact, this time may be so long th
for all practical purposes, the system may be seen as ord
@9#. A second question concerns the dependence of this
on the size of the system. The definition of a SST allows
analytical estimate of its dependence on the number
DOF’s for the FPU system@5#. The estimate indicates tha
the SST should persist in the thermodynamic limit. This
sult does not obviously give an ultimate answer to
question—raised at the beginning of this section
concerning the relevance of an ordered dynamics for
thermodynamic properties of a system. One should n
however, that physics often deals with systems which
very small on a macroscopic scale, yet have a sufficie
large number of DOF’s to be treated statistically~e.g., clus-
ters of particles, and macromolecules!. For these systems on
can reasonably expect the macroscopic properties to be
fluenced by the presence of persistent ordered motions,
physically relevant low energy range.

The Nekhoroshev theorem and the existence of the S
lead quite naturally to the expectation that different DOF
may be endowed with different levels of chaoticity above
SST, and with different levels of order below the SST. In t
phase space, the region around the SST should be chara
ized by the coexistence of ordered and chaotic DOF’s~these
definitions are to be qualified by the time interval duri
which the system is observed, as asymptotically all DO
should behave chaotically!. The coexistence of ordered an
chaotic dynamics in one and the same system was ind
detected already several years ago. For example, the dy
ics of a lattice at low temperature exhibits such a mix
behavior if one describes it through the normal mod
@10,11#.

Summarizing this introduction, we can say that a th
ough description of a dynamical system, both from mecha
cal and statistical points of view, requires the determinat
of the level of order or chaoticity of each single DOF. If th
number of DOF’s is low, one can use Poincare´’s maps and
auto-correlation and cross-correlation functions to charac
ize the dynamics of each DOF. But for systems with ma
DOF’s these diagnostic tools become impracticable. On
other hand, the usual indicators of order and ch
~Lyapunov exponents, fractal dimension, and spectral
tropy! are of global nature, and do not give information
single DOF’s. One therefore has to resort to new diagno
tools.

In a previous short paper@12#, we introduced and com
puted coherence anglesfor Hamiltonian systems, which
measure in the tangent space the angular distance bet
any physically relevant direction, and the direction of ma
mum divergence of trajectories starting from very ne
points. These angles can single out the DOF’s that are c
acterized by the highest chaoticity, even above the SST
the present paper we give a full account of the propertie
the coherence angles, and show their connection with a s
coherence timescharacterizing each single DOF@13,14#. The
main focus of the present work being the detailed analysi
ly
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the coexistence of ordered and chaotic DOF’s, we have
cided to apply this diagnostic tool to a system studied befo
in order to interpret the results in the framework of a know
phenomenology. In Sec. II we describe the Hamiltonian s
tem chosen as a model for the present work; in Sec. III
study the transition region between highly chaotic and hig
ordered dynamical regimes. Sections IV and V are devo
to coherence angles and their properties, and in Sec. VI
generalize this concept to a theoretical frame taking into
count all Lyapunov characteristic directions—expanding a
contracting—in the tangent space. Sec. VII is devoted t
discussion of the ‘‘partial Lyapunov exponents’’~PLE’s!,
which measure the rate of divergence of single DOF’s; in
same section we show how to compute for each DOF a
herence time from the corresponding PLE, and its relation
the coherence angle. In Sec. VIII we summarize our met
and the numerical results.

II. HAMILTONIAN MODEL

Atomic lattices are systems which are suitable for a
tailed study of ordered and chaotic dynamics. Their behav
has been analyzed several years ago, and it has been fou
exhibit a neat transition from a chaotic to an ordered regi
when the energy is lowered@10,11#. For example it turned
out that, in a 2D lattice, using a potential with paramet
adapted to argon, the change in the dynamics takes place
energy range corresponding to temperatures between 3
20 K @10,11#. A striking aspect of this transition was a brea
down at low temperature of the equipartition of ener
among normal modes. The normal modes are~collective!
variables which clearly manifest the change in the dynam
regime, and we have chosen them as an appropriate s
study the coexistence of order and chaos in a lattice w
many degrees of freedom.

In order to allow comparison with previous work@10,11#,
we have first chosen for the simulation a 2D system co
posed ofN2 particles of massM (N58), arranged on a
square lattice with square cells of sided, surrounded by a
border of fixed particles. Each particle is bonded to the fo
first neighbors by a Lennard-Jones~LJ! potential:

V~r !54«F S s

r D 12

2S s

r D 6G ; ~1!

V(r ) has its minimum atr 0521/6s.
Let us denote byulm

x andulm
y the displacements from th

lattice equilibrium position of the particle at site (l ,m)
( l ,m51,8). The normal-mode coordinates are defined by

qhk
x 5

2

N11 (
l ,m51

N

ulm
x sinS hp l

N11D sinS kpm

N11D ,

qhk
y 5

2

N11 (
l ,m51

N

ulm
y sinS hp l

N11D sinS kpm

N11D ,

where h,k51,N. To obtain the expression of the Hami
tonian of the system in these coordinates, we expand the
potential to the second order around the first neighbors
tance, and sum this contribution over all pairs of neighbor
particles. The Hamiltonian now becomes
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H5
M

2 (
h,k51

N

@~ q̇hk
x !21~vhk

x qhk
x !21~ q̇hk

y !21~vhk
y qhk

y !2#

1H8,

whereH8 is the interaction Hamiltonian, which contains th
whole coupling among modes produced by the interac
among particles~restricted to the first neighbors!, and is neg-
ligible at low energy;vhk

x ,vhk
y are the angular frequencies o

the normal modes:

~vhk
x !25

4

M FKL sin2
ph

2~N11!
1KT sin2

pk

2~N11!G ,
~vhk

y !25
4

M FKL sin2
pk

2~N11!
1KT sin2

ph

2~N11!G , ~2!

KT[
1

r

]V

]r U
d

548S 0.5
1

d8
2

1

d14D ,

KL[
]2V

]r 2 U
d

548S 13
1

d14
23.5

1

d8D .

We have considered two different cases for the cell sided.
~i! d15r 0, which corresponds to zero pressure at z

temperature. In this caseKT50, and there are onlyN distinct
frequencies (vhk

x 5vkh
y [vh) ranging from 0.3789 to 2.1491

in LJ reduced units@15#; the normal modes are natural
divided into N groups, each including 2N516 modes of
equal frequency. In terms of normal modes, the total ene
of the system may be written as the sum of the energiesEh
of each group of modes, plus the energy of the coupling
to theH8 term; here

Eh5 (
k51

N

@~ q̇hk
x !21~vh

xqhk
x !21~ q̇kh

y !21~vh
yqkh

y !2#.

In the following, the group energiesEh will be the variables
used to monitor the chaos-to-order transition in the lattice
fact, as described in Ref.@11#, modes of equal frequenc
exchange rapidly their energy, providing a good ene
equipartition inside a group; therefore, the energies of
groups become the relevant variables to evidence the br
down of energy equipartition.

~ii ! Compressing the system (d,r 0), one finds a critical
value of the side celld under which some frequencies b
come imaginary, i.e., the corresponding modes become
stable: this depends on the effect of both the changes inKT
andKL . One has

KT>0 if r>r 0 , KT,0 if r ,r 0,

KL>0 if r<r f , KL,0 if r .r f ,

where r f.r 0 is the value corresponding to the inflectio
point of the LJ potential (r f51.2445s). So in the case where
r ,r 0 or r .r f there exist some values ofh andk such that
vhk

2 ,0. Restricting our attention to the case withr ,r 0

~compressed lattice!, we have estimated for the side cell
critical value corresponding to the onset of the instabili
n

o

y

e

n

y
e
k-

n-

.

For the system withN58 a Taylor expansion ofKT and of
KL to the first order ind2r 0 gives a critical valued2.r 0
20.03r 0 ~see Appendix A for further details!.

We have compressed the system to a value slightly ab
d2. In this case the frequenciesvhk

x 5vkh
y range from 0.0658

to 8.4471, and the relevant variables are the 64 group e
gies, where each group entails two modes of equal
quency:

Ehk5~ q̇hk
x !21~vhk

x qhk
x !21~ q̇kh

y !21~vkh
y qkh

y !2.

We have used a standard central-difference algorithm for
numerical integration of the equations of motion of the p
ticles, improved by one order in the computation of the v
locities. A description of this modified algorithm is given i
Appendix B.

We have explored the energy range frome50.2 to 0.002,
where e5E/N2 is the energy per particle. This range in
cludes the transition region determined in Refs.@10,11# for
the 64-particle system. In this range we have studied
dynamics of the system at the energy valuese
50.2, 0.05, 0.02, 0.007, and 0.002; for argon, this cor
sponds to temperatures in the range 0.24–24 K. In m
simulations the total energy was initially distributed at ra
dom among all particles; as a consequence it was distrib
at random among all normal modes. We have also perform
some simulations in which only selected normal modes w
initially excited ~see Sec. III!.

We have repeated our experiment for a 3D cubic lattice
512 particles (N58), with lattice parameterd1; the normal
modes’ frequencies of this system are the same as in the
case, but the degeneration inside each group is 12 ti
higher (3N25192 modes per group!; the temperature rang
explored has been the same as in the 2D case.

III. TRANSITION REGION

A. Generic initial conditions

In this section we analyze and complement previous w
done on the transition region of our system, and show
interest of introducing new diagnostic tools suitable for ga
ering information on single DOF’s. In Ref.@11# the authors
analyzed the transition region of the system studied h
choosing generic intial conditions by distributing the ener
at random among all the modes. They measured the en
of each group of modes, and computed all correlation fu
tions:

Gi j ~t!5
Š„Ei~ t !2^Ei&)~Ej~ t1t!2^Ej&…‹

AŠ„Ei~ t !2^Ei&…
2
‹^~Ej~ t1t!2^Ej&…

2
‹

;

here ^•& is a time average. The autocorrelation functio
exhibit a twofold behavior: a rapid exponential-like decay
short times~which dominates at high energy!, and a slow
decay at long times~which dominates at low energy!. The
transition between the two regimes takes place in the t
perature range mentioned in Sec. II. The threshold is dif
ent for different groups, and is generally higher for groups
higher frequency. The computation of the mean energy
each group of modes also allowed a check of the degre
equipartition reached by the system. Decreasing the temp
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4812 PRE 62D’ALESSANDRO, D’AQUINO, AND TENENBAUM
ture below 20 K, the system passes form a state where e
partition holds to states where equipartition requires incre
ing times; at low temperature no trend toward equipartition
visible. At the lowest energies studied the dynamics of
system is complex: ate5231023, the behavior of the mean
energies and of the cross-correlation functions highlights
nontrivial selection rules exist which greatly favor the ener
exchange between some groups, and strongly hamper
other exchanges. These particular channels of energy
change can be easily explained. In fact ford5r 0 there are
exact resonances among the frequencies of the no
modes:

v11v55v7 ,

v21v45v8 ;

these resonances determine a preferred exchange amon
resonant groups with respect to the others. Groups 3 an
which are not resonant, do not have an appreciable en
exchange, so that their energies are almost constant. Inc
ing the temperature the exchanges of energy become sig
cant also outside the channels of resonance, and at abo
K these channels disappear and equipartition is reached
short time.

The diagnostic tools described so far—correlation fu
tions and time dependence of mean energies—are use
one deals with a system of few DOF’s, but become impr
cable if the number of DOF’s becomes large. In order
have a synthetic description of the transition region, we h
computed the spectral entropy, defined by

H~ t !52(
k

pk ln pk wherepk5
^Ek~ t !&

(
k

^Ek~ t !&

.

It is always positive, restricted between the value 0, when
energy is concentrated in only one group, and the va
Hmax5 ln N, when the system has reached equipartition a
pk5(1/N) ;k. It gives a neat information about the degr
of equipartition of the system, but it has an explicit depe
dence onN. To compare systems with a different number
distinct group frequencies, one introduces a normalized s
tral entropyh(t) for random initial conditions, where th
explicit dependence onN is removed:

h̃~ t !5
Hmax2H~ t !

Hmax
.

At equipartition the time average ofh̃ is equal to zero, while
h̃51 if all the energy is concentrated in only one group.

The results obtained forh̃ from the simulations of the 2D
lattice, with random initial conditions, are shown in Fig.
As expected, the values ofh̃ decrease as the temperatu
increases;h̃ first decreases almost exponentially, up to
temperature corresponding to aboute.0.05. Above this
value, h̃ has a~slowly decreasing! value near to zero. This
transition corresponds to the SST, which can be located
tweene5231022 and 531022 for this lattice.
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We have simulated the cubic system with lattice para
eterd1 in three dimensions. In Fig. 2 we report the fractio
of the total energy of all groups ate5231022 for the 2D
lattice and e5331022 for the 3D lattice, both uncom-
pressed. These specific energies correspond toT52.4 K for
both lattices, which exhibit at this temperature a slow tre
toward equipartition. It is evident that, at any given time, t
level of equipartition is higher for the 3D lattice than for th
2D one. We can try to understand this fact by consider
that the exchanges of energy among groups of modes de
on the number of coupling terms among modes of differ
frequency. In an uncompressed 2D (N3N) lattice there are
2N2 normal modes andN groups, each of 2N degenerate
modes; the number of coupling terms~of the third order!
between one mode and other modes of different frequenc
4N3(N21).

In a 3D (N3N3N) lattice there are 3N3 normal modes,
andN groups of 3N2 degenerate modes each; the number
coupling terms between one mode and other modes of
ferent frequency is 9N5(N21). The ratio of the numbers o
coupling terms—involving different frequencies—in the 3
and 2D cases is therefore 9N2/4 (5144 for N58). We can
then infer that, for a givenN and set of frequencies, in a 3D
lattice the exchange of energy among different groups
more effective than in a the 2D lattice, because of the m
higher number of coupling terms. As a matter of fact, this
what we found in the simulation by computing the spect
entropy. In the 3D lattice we obtained values ofh̃ which are
quite a bit lower than those of the 2D lattice. So, for e
ample, we found h̃52.531024 at e50.02, and h̃5
4.531025 at e50.03. The latter value must be compar
with h̃54.031023 found in the 2D lattice ate50.02, which
corresponds to the same temperature.

We have also computed the maximum Lyapunov ex
nentl1, which gives a measure of the rate of divergence
the phase space of initially nearby trajectories, and henc
measure of the degree of chaoticity of a dynamical system
a whole (l1 will be better defined in Sec. IV!. A positive
value ofl1 means that trajectories starting from close poi
in Rm will diverge exponentially in time, which is characte

FIG. 1. Spectral entropyh̃ of an uncompressed 64-particles 2
system with random initial conditions, as a function of the ene
per particlee.
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FIG. 2. Time averaged fraction of the total energy entailed in eight groups of modes:~a! 2D lattice with 64 particles ande50.02;~b! 3D
lattice with 512 particles ande50.03. The horizontal line corresponds to 1/8~equipartition!.
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istic of chaos. A zero value ofl1 means that nearby trajec
tories diverge linearly in time, which is characteristic f
order.

In Fig. 3 we reportl1 vs the energy per DOF for th
uncompressed 2D system~i.e., d5d1), the compressed on

FIG. 3. Maximum Lyapunov exponentl1 as a function of the
energy per degree of freedom, for the 2D uncompressed (h) and
compressed systems (1), and for the 3D system (L).
(d>d2), and the 3D uncompressed system. We observe
expected decrease with temperature ofl1, and also a non-
zero value at the lowest energy. This means that the sys
is still in a weakly chaotic regime, even though the behav
of $En% shows that at this energy equipartition could
reached only in exceedingly long times.

The compressed system is more chaotic than the o
two systems, as shown by the higher value ofl1; this is
probably due to an increase of the anharmonicity of the
tential well ‘‘felt’’ by the particles, which more than com
pensates for a possible weaker exchange among modes
to the breakdown of the resonances among modes
among groups of modes. The behavior ofl1 suggests locat-
ing the SST in the energy region where the slope of a cu
l1 versus loge changes: above the SST the slope ofl1 will
be lower, as the system is strongly chaotic andl1 changes
less when the energy is raised@8#. Here the change of slop
cannot be located exactly. One can only say that it ta
place betweene50.02 ande50.05, which agrees with the
range indicated by the curve of the spectral entropy. T
same figure shows the curve ofl1 for the 3D system. Here
the values ofl1 are always higher than those of the 2
uncompressed system, as expected.
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B. Nongeneric initial conditions

The previous measures allow a quantitative estimate
chaos and order for the system as a whole. But in a nonlin
system individual DOF’s may behave differently, and inte
act with the other DOF’s through a very complicated patt
of energy exchanges. This can be emphasized by setting
system in an initial state where only a few DOF’s are e
cited, instead of using a generic condition in which the e
ergy is randomly distributed among all DOF’s. By doin
this, the system is put in a phase space region of low pr
ability density; nevertheless, this can yield interesting inf
mation, complementary to that gathered in the~generic! re-
gion of high probability density.

In Ref. @10# the transition region was analyzed, choosi
initial conditions where all the energyE was given to modes
belonging to one and the same group. During the dynam
the time averageŝEh& of the energy of each group o
modes, defined in Sec. II, were monitored. It was found t
inside each group of degenerate modes equipartition
reached quite fast, also at low temperature.

A parameterl5(Emax2Emin)/Emax was used to measur
the oscillation of the energy of the initially excited group
modes.Emax andEmin denote, respectively, the maximal an
minimal energies attained by the initially excited group
modes during the evolution of the system. Whenl50 this
group does not share its energy with any other group, w
whenl51 there is at least a time when this group has giv
all its energy to other groups.

A second parameter,m5(^En8&2^En9&)/^En8&, mea-
sured the deviation from complete energy equipartit
among modes. Heren8 andn9 are the indices of the group
with, respectively, maximum and minimum time averag
energy^En&. Whenm51 there is at least a group of mode
which does not receive any energy during the whole simu
tion; m50 means that all groups share energy equally,
that equipartition holds. Small values ofl imply large values
of m, but it can happen that both parameters are close t
when the initially excited group shares its energy with oth
groups but not with all of them.

In order to determine the boundary between ordered
stochastic motion as a function of the specific energye, the
behavior ofl and m was observed fixing a threshold atl
5m5 1

2 . The results show that the thresholds grow with t
frequency, except in the presence of resonances which c
specific channels of energy exchange. The threshold ene
found in this way locate the transition region in the sa
temperature range mentioned before.

Our simulation in two dimensions with cell sided5d1
shows that preferred channels of energy exchange e
which are dependent on the initially excited group; mo
over, these channels are not symmetric. In Table I we re
the results obtained ate5231023, which clearly show a
striking strong asymmetry in the energy exchanges. If
initially excite only group 1, the energy flows to groups 2,
and 4, but group 1 does not receive any energy if we ex
any other group. The resonant groups 2-4-8 exchange en
among themselves, but also with other groups. Group 3,
of the nonresonant groups, receives energy when we initi
excite group 1, 5, or 8, but gives its energy only to group
when initially excited. Group 6, the other nonresonant o
of
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takes energy if we excite groups 2, 3, or 4 but, when i
tially excited, does not exchange with any other group; thi
an example of a phenomenon typical of nonlinear syste
the self-trapping of energy. It was already known that th
is a lower threshold for the energy exchange among gro
which depends on the initially excited groups: those with
initial energy unlikely absorb energy from other groups@10#.
Table I emphasizes a sort of diffused self-trapping of ener
and adds the feature of a high asymmetry in those exchan
Even when a group is excited whose frequency is in an ex
resonance relation with other frequencies, its energy does
flow to all the resonant groups. Instead, it may flow to grou
which are not resonant. So, for example, the first column
Table I shows that energy given initially only to group
goes to groups 2, 3, and 4~which are not resonant!, but not
to groups 5 and 7~which are resonant!. This behavior is
clearly due to the particular out-of-equilibrium initial cond
tions. For generic equilibriumlike initial conditions, group
would exchange energy mainly with the resonant group
and 7, as shown in Ref.@11#.

The different response of the system to different non
neric initial conditions can also be seen also in the beha
of the spectral entropyH and of l1. For initial conditions
which are not random@HmaxÞH(0)#, one uses a differen
normalization of the spectral entropy:

h~ t !5
Hmax2H~ t !

Hmax2H~0!
.

In Fig. 4, h(t) is shown at the energies 231023 and 2
31021, for two different initial conditions. At e5
231023, if only group 6 is initially excited,h(t) is almost
constant and equal to its maximum, due to the absenc
any energy exchange; if group 1 is initially excited,h soon
acquires a low value, due to the existence of a substan
energy exchange among groups. At higher energy,e50.2,
the system tends to equipartition with both initial condition
but it turns out that it needs very different times to relax
equilibrium. In the specific case, the relaxation time ofh,
when group 6 is initially excited, is one order of magnitu
larger than the relaxation time found when group 1 is
only one initially excited.

Correspondingly,l1(t) at e50.002 assumes a highe
value ~chaotic dynamics! for initial excitation of group 1,
and a lower value~ordered dynamics! for initial excitation of
group 6 ~Fig. 5!. Both results forh andl1 are in agreemen
with the characteristics of the two groups reported in Tabl
At the energye50.2, l1 soon reaches the same asympto
value, when only group 1 or group 6 are initially excited.
this energy the dynamics of the system is chao

TABLE I. Exchanges of energy for different initially excite
groups; the groups which receive energy are listed in order of
creasing average energy^En&. e50.002.

Initially excited group
1 2 3 4 5 6 7 8

Groups 2 4 6 8 8 4 2
receiving 3 6 6 3 3
energy 4
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FIG. 4. Time evolution of the spectral entrop
for a 2D lattice with out-of-equilibrium initial
conditions: curvesa and b correspond to simu-
lations in which group 1 and, respectively; grou
6 was the only one initially excited.~a! e
50.002.~b! e50.2.
t

be
o-

r
u
gl
s
er

ith

o-
stic
and the pattern of asymmetric channels which dominates
exchanges at low energy is destroyed.

As a conclusion to this section, we can say that the
havior of the lattice in the transition region is highly inh
mogeneous, and that a detailed analysis of the transition
gion requires an examination of the single DOF’s. The us
indicators of order and chaos, on the other hand, are of
bal nature, and give information only about the system a
whole. In Sec. IV we describe a tool suitable for charact
he

-

e-
al
o-
a
-

izing single DOF’s, which can also be used for systems w
many DOF’s.

IV. COHERENCE ANGLES

A. Dynamics in the tangent space

We first briefly recall the theory of the Lyapunov exp
nents, and elaborate on it to introduce the new diagno
r
FIG. 5. Maximum Lyapunov exponent fo
nongeneric initial conditions;a: only group 1 is
initially excited; b: only group 6 is initially ex-
cited. ~a! e50.002.~b! e50.2.
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tool. LetRm be a differentiable,m-dimensional, compact an
connected Riemannian manifold of classC2. If xPRm, we
denote byTRx

m the normed tangent space toRm in x. Let
F t:Rm→Rm be a flow generated by the set of different
equationsẋ5f(x); the tangent mapping ofTRx

m ontoTR
Fx

t
m

,

induced by the diffeomorfismF t, will be denoted bydFx
t .

Oseledec@16# ~also see Ref.@17#! proved that a baseea

exists inTRx
m , such that

lim
t→`

1

t
lnidFx

t ~ea!i5l~x,ea!5la~x!.

The numbersla(x) are called the Lyapunov characterist
exponents, and give a measure of the rate of divergenc
the phase space of initially nearby trajectories.la(x) are not
necessarily distinct; we denote by$n j%1< j <s the distinct val-
ues taken by$la(x)%1<a<m , and bykj (x) the multiplicity of
n j (x). We also letn i>n j if i< j . Then a theorem@17# states
that there exist linear subspacesH1 , . . . ,Hs , s5s(x) such
that TRx

m5H1% •••% Hs and dim Hi5ki(x). If eÞ0, e
PH1% H2% •••% H j but eÞPH1% H2% •••% H j 21, then
l(x,e)5n j (x). If in TRx

m one chooses a vectore at random,
then one may expect to findl(x,e)5l1. From now on$n j%
will be denoted by$l j%.

The first way to compute the Lyapunov exponent was
follow the dynamics of two initially nearby trajectories, an
to study the evolution of their distance. Later a second w
was developed, in which the dynamics in the tangent sp
of the phase space was computed by linearizing the e
tions of motion. Ifẋ5f(x), xPRm, the linear evolution of a
tangent vectorwPTRx

m , the tangent space inx, is given by

ẇi~ t !5(
j 51

m
] f i

]xj
wj~ t !.

From the theorems mentioned before, there is a base$êi%
in TRx(0)

m , such that for almost all initial conditions the lon
time evolution ofw is given by a superposition of vector
the coefficients of which are exponentials of the Lyapun
exponentsl ı ,

w~ t !5(
i 51

s

ai~ t !el i t5(
i 51

s

ai~ t !e(l i2l1)tel1t[b~ t !el1t,

wheres<m, ai[( j uw(0)ucj (t)êj , and this sum is done ove
all êj characterized by the same expansion ratel i . The ma-
trices cj (t) entail a possible time dependence weaker th
the exponential one, and the rotation of$êj% generated by the
flow of the dynamics. One has lim

t→`
b(t)5a1(t) for almost

all w(0).
Let the phase space be decomposed into the direct su

n subspaces,S1 , S2 , . . . , Sn (n<m), which are physically
interesting for the study of the system~they can also be
single DOF’s!. This phase space decomposition will indu
an analogous decomposition of the tangent space inn sub-
spacesTS1 , TS2 , . . . , TSn .

Thecoherence angles~CA’s! a i , i 51, . . . ,n, are defined
through
in

o

y
ce
a-

v

n

of

cos2a i5 lim
t→`

1

t E0

t uw( i )~ t8!u2

uw~ t8!u2
dt8,

wherew( i )(t) is the projection ofw(t) on TSi . Asymptoti-
cally w(t)→a1(t)exp(l1t) and w( i )(t)→a1

( i ) exp(l1t), where
a1

( i ) is the projection ofa1 on TSi . So we have that

cos2a i5 lim
t→`

1

t E0

t ua1
( i )~ t8!u2

ua1~ t8!u2
dt8,

and eacha i represents an average angle between the s
spaceTSi and the maximum expansion subspace.TSi are a
fixed characteristic of the system; the maximum expans
subspace depends only on the phase space represen
point, and oscillates—as will be shown below—around
average direction inTRx(t)

m . It follows that the CA’s have a
weak dependence on the initial conditions in the tang
space and in the phase space.

The coherence angles provide a mean to single out th
DOF’s which are endowed with a higher degree of chao
ity, characterized by a low value of the angle. By contra
DOF’s characterized by a high value of the coherence an
have a high degree of coherence, and therefore require
long times to reach equilibrium. The latter DOF’s are th
responsible for a possible finite-time out-of-equilibrium b
havior of systems which are apparently at equilibrium
being chaotic as a whole, as indicated by a positive value
l1. There is, however, a problem in measuring accurately
degree of coherence of the most ordered DOF’s, when
number n of physically interesting DOF’s becomes ve
large. One can define a coherence anglea averaged on all
the DOF’s of the system, for which the relation cosa
51/An holds @12#. This implies that whenn becomes large
the most coherent DOF’s are characterized by angles c
fined in a narrow range betweena and p/2; they are thus
difficult to distinguish, even if they are endowed with ve
different degrees of coherence~this does not apply to the
most chaotic DOF’s, which are characterized by low valu
of the a i ; therefore, their spread in the range 0 –a may
increase whenn increases!. In the following we will show
how to circumvent this problem.

B. Oscillation of the maximum expansion subspace

Let A(t) be a function with zero time average

lim
t→`

1

t E0

t

A~ t8!dt850;

there are two distinct possibilities for limt→` A(t): ~i! ei-
ther the limit is zero, or~ii ! the function has no limit and
oscillates indefinitely between positive and negative valu
On the other hand, if~iii ! limt→`1/t*0

t uA(t8)udt8.0, one
can be sure thatA(t) has property~ii !.

Let us consider the function

Ai~ tk!5 ln
cosb i~ tk!

cosb i~ tk21!
.
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Here b i(t) is the angle at timet between a vector in the
tangent space and its projection on thei th subspaceTSi :
cosbi(t)5uw( i )(t)u/uw(t)u.

We will now prove that

lim
t→`

1

t E0

t

Ai~ t8!dt850.

One has cosbi(tk)5exp@Ai(tk)#cosbi(tk21) and

cosb i~ tT!5expF (
k51

T

Ai~ tk!Gcosb i~ t0!,

which is equivalent to

uwi~ tT!u
uwi~ t0!u

5expF (
k51

T

Ai~ tk!G uw~ tT!u
uw~ t0!u

.

Taking the logarithm and dividing bytT5Tnt (nt is the
time step of the simulation!, one has:

1

tT
ln

uwi~ tT!u
uwi~ t0!u

5

(
k51

T

Ai~ tk!

T

1

nt
1

1

tT
ln

uw~ tT!u
uw~ t0!u

.

AsymptoticallyT@1, so that

lim
t→`

1

t
ln

uwi~ t !u
uwi~ t0!u

5^Ai~ t !& t

1

nt
1 lim

t→`

1

t
ln

uw~ t !u
uw~ t0!u

and hencel15^Ai(t)& t(1/nt)1l1, from which it follows
that ^Ai(t)& t50. From our numerical results~Sec. V D! we
know that property~iii ! holds. Therefore, property~ii ! also
holds. One can conclude thatAi(t), ; i oscillates indefi-
nitely around zero. This implies that cosbi oscillates around
its quadratic average value cosai , that is, that the angle be
tween the vectorw and the subspaceTSi oscillates around a
mean value.

The tangent vector of the systemw(t) follows the maxi-
mum expansion subspaceH1, which oscillates around its av
erage orientation. This point can be checked in the follow
way. There are no prescriptions in the Lyapunov the
about the norm one chooses in the tangent space, prov
there exists one. Hence we can choose a norm such tha

uw~ t !u25(
i , j

~dq̇i j
2 1v i j

2 dqi j
2 !,

wheredqi j are the normal coordinates in the tangent spa
and v i j the corresponding frequencies. With this choice
the norm we expect to minimize the oscillation characteris
of the normal mode, leaving only the variation due to exp
sion in the tangent space. At low energy, where the nor
modes approximation is good, we find that the asympto
dependence ofuw(t)u on time is of the formel1t. This means
that w(t) belongs toH1; therefore, the oscillations ofb i(t)
can only be due to the oscillation of the maximum expans
subspaceH1 around its average orientation.
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V. NUMERICAL RESULTS FOR THE COHERENCE
ANGLES

In this section we describe the results of the CA’s relat
to groups of normal modes; they have been obtained fr
numerical simulations at various energies for 2D and
lattices, with lattice parametersd1 and d2 ~uncompressed
and compressed lattice!. Different initial conditions were
used at a given energy both in the phase space and in
tangent space. We have computed the dynamics of one
jectory for each initial condition in the phase space, and u
the tangent dynamics~assuming that the second one starts
an infinitely small distance!. For the systems we deal with
the equations of motion in the tangent space are reporte
Appendix C.

A. CA’s for the uncompressed 2D lattice

CA’s have been computed for different random initi
conditions, either in the tangent or in the phase space
every simulated energy~Sec. II!. In Fig. 1 of Ref.@12# the
spectrum of the CA’s at three different energies was
ported. The CA’s show, as expected, a very weak dep
dence on the initial condition in the tangent space: lower
the energy, the maximum relative spread of their values
creases from 1026 at e50.2 to 0.04 ate50.002. The depen-
dence on the initial point in the phase space~at a given
energy! is stronger: the maximum relative spread increa
from 0.005 ate50.2 to 0.08 ate50.002.

The spectrum below the SST (e50.002) exhibits a varie-
gated structure where group 1 has the lowest CA and he
is the most chaotic, followed by group 2, which has t
second lowest CA. On the other hand groups 3 and 6, wh
have the highest CA’s, should be the most ordered; this
sult is confirmed by the behavior of the same groups found
previous work@11#: their energies are almost constant.
spectrum taken ate50.007 shows that group 3 has lost i
ordered behavior, and is now the third most chaotic gro
after groups 1 and 2, while group 6 is still quite ordere
Near the SST (e50.02,0.05) one observes a monotono
increase of coherence with the frequency of the norm
modes: group 3 and 6 have lost their singular behavior. R
ing the energy above the SST (e50.2), we observe that al
normal modes have similar coherence, with the exception
group 1, which still is more chaotic.

Besides the CA’s of the groups, we also computed
CA’s for the 64 pairs ofx andy modes characterized by th
same frequency and by the same wave vector@same indicesh
and k for vhk

x and vkh
y in formula ~2!#, and the results are

shown in Fig. 6. They agree qualitatively with those fou
for the groups, but the spread of the values is reduced;
average angle is of course higher, because of the higher n
ber of DOF’s (cosa51/A64, a.83°). At the lowest energy
(e50.002), modes 1 –8, which constitute group 1 in th
lattice, are definitely the most chaotic. On the other hand
CA’s of modes 41–48 are the highest of the system a
nearly equal, in agreement with the fact that group 6 is
most coherent and does not exchange energy with o
modes outside the group, as its frequency is not reson
The CA’s of modes 17–24~group 3, the other nonresonan
one! also fall in a narrow range. Raising the energy toe
50.02 the CA’s gradually increase with increasing values
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FIG. 6. Spectrum of the coherence angles
the uncompressed 2D lattice at energies:e
50.002~1!, e50.02 ~2!, ande50.2 ~3!. i is the
index of pairs of modes characterized by th
same frequency and by the same wave vec
The frequency increases withi, every eight pairs.
The horizontal line corresponds to the avera
anglea.83°.
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frequency, even though inside each group there are s
deviations from the expected trend@18,19#. At e50.2 the
equipartition is nearly reached and we find that all CA’s a
close to the averagea.

B. CA’s for the compressed 2D lattice

Compressing the system we destroy the exact resona
among frequencies, as mentioned in Sec. III A. In this c
we have 64 groups of different frequency, each of two mo
(x and y) of equal frequency and equal wave vector; t
spectrum of the CA’s gives at the same time a detailed c
acterization of all DOF’s, and a synoptic view of the dynam
cal behavior of the whole system.

In Ref. @12# we reported the spectra of the CA’s at tw
different energies:e50.002 and 0.05. For this lattice th
average angle isa.83°. At the lowest energy pairs 1–8
which originate from group 1 of the uncompressed latti
exhibit the lowest CA’s; the highest frequency pairs are
most coherent, as expected. But we found an unexpe
high chaoticity of two medium and high frequency bunch
of pairs centered around pair Nos. 40 and 56. The hig
chaoticity of pair Nos. 40 and 56 may be related to the f
that their frequencies are resonant~within 0.4%) with the
ratio 3/2, which may lead to a strong exchange of energy
the higher energy pairs 1–8 still exhibit CA’s significant
lower than the rest of the system, where the CA’s are v
near to the average one. The coherence angles show her
even in this highly chaotic regime the different DOF’s a
characterized by different coherence levels. The sprea
the CA’s around the average angle in this system is lo
than in the uncompressed one. According to the results fo
for the Lyapunov exponent~Sec. III!, we can attribute this
fact to a higher level of chaoticity of the compressed latt
with respect to the uncompressed one.

C. CA’s for the 3D lattice

We have also computed CA’s for an uncompressed
system ofN35512 particles. The numerical results show th
for a given frequency~i.e., for a given group of norma
all

e

es
e
s

r-
-

,
e
ed
s
er
t

t

y
that

of
r

nd

e

D
t

modes! the values of the CA’s are almost the same as in
uncompressed 2D case. We remind the reader that we
served~see Sec. III! a higher degree of chaoticity of the 3D
lattice with respect to the 2D one. Indeed the resultl1

3D

.l1
2D means that a vector belonging to the maximum exp

sion subspace expands with a higher rate in the 3D sys
than in the 2D system; this is not related to the CA’s, whi
are the angles between the maximum expansion subs
and the DOF subspaces, and measure the contributio
each DOF to the chaoticity of the whole system.

The CA’s are computed through the ratiouwi(t)u/uw(t)u.
To understand why the CA’s are nearly equal in two a
three dimensions, one can suppose that the pace of evolu
of wi(t) depends, besides their frequency, on the numbegi
of anharmonic terms in the Hamiltonian which involv
modes of groupi, while the pace of evolution ofw(t) de-
pends on the numberg of all anharmonic terms of the sys
tem. For the purpose of comparison, the numbersgi and g
can be computed by considering only the third order term
the expression of the Hamiltonian in normal modes, wh
give the highest contribution to the time evolution of th
tangent vectors.

For the 2D lattice each group entails 2N modes, andgi
58N4(N21)1(2N)3, where the first term is the number o
third order terms involving modes of the group and modes
any other groups, while the second term is the numbe
third order terms inside the group. For the whole system
has g5(2N2)3. For the 3D lattice each group entails 3N2

modes, andgi527N7(N21)1(3N2)3; one also hasg
5(3N3)3. The ratio gi /g in both cases is@N(N21)
11#/N350.111. The fact that the two values are equal i
hint that the CA’s may depend on the fraction of anharmo
terms involving modes belonging to the corresponding s
spaceS, besides the known dependence on the frequenc

In the case of the compressed 2D lattice, the CA’s
quite different from the uncompressed case, as one can
comparing Fig. 6 with Fig. 3 of Ref.@12#. As a matter of
fact, one findsgi /g50.0154 for the compressed lattice, an
also for the uncompressed one, when the latter is descr
by means of groups entailing only a pair of modes, as
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FIG. 7. Spectrum of the coherence angles
the uncompressed 2D lattice for nongeneric in
tial conditions.e50.002; group 1~6! initially ex-
cited: L (1). e50.2; group 1~6! initially ex-
cited: h (3). i is the index of groups of mode
characterized by the same frequency. The f
quency increases withi.
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Fig. 6. In this case, the difference between the CA’s of
two systems is clearly only due to the different frequen
spectra.

D. Oscillation of the maximum expansion subspace

The results obtained for the functionAi(t) introduced in
Sec. IV B show that the averages^uAi(t)u& ; i are well sta-
bilized in the course of the simulations, and that they
always positive at all the energies studied; furthermore,
^uAi(t)u& are different for differenti. We can conclude tha
the maximum expansion subspace of each DOF oscillate
the tangent space of the hypersurface of constant energy
amplitude of this oscillation is different depending on t
subspaceTSi on which we project the tangent vectorw(t).
Raising the energy, the differences among amplitudes co
sponding to different subspaces increase and decrease
irregular way, while their average increases.

E. Nongeneric initial conditions

In this last subsection we briefly report the results o
tained by exciting only one group at a time, in the unco
pressed 2D lattice. In Fig. 7 the CA’s at the energiese
50.002 and 0.2 are reported for initial excitation of group
or group 6. At the lowest energy group 1, if initially excite
is the most chaotic and from Table I we know that it gives
energy mainly to groups 2, 3, and 4~the intensity of the
exchange decreases in this order!. The CA’s are indeed
found to be increasing in that same order. If we excite gro
6, according to Table I the exchanges with other groups
very weak, and hence the CA’s are very high. Obviously
lowest angle in this case is just that of the sixth group, wh
turns out to be even lower than that of group 1, when
latter is the only group initially excited. At the higher energ
the two different initial conditions give nearly the same r
sults. We note that the resulting CA’s are quite similar
those obtained for random initial conditions~as shown in
Fig. 1 of Ref.@12#!: when equipartition holds the system is
a state which is no more sensitive to the initial conditio
The results of this subsection show that the CA’s can prov
a detailed information on the behavior of the system a
when the latter is in a nonequilibrium dynamical state.
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VI. GENERALIZED COHERENCE ANGLES

The CA’s measure the angular distance between the v
ous DOF’s and the maximum expansion subspaceH1 corre-
sponding tol1, and are well defined asymptotically. But i
the medium time, the evolution of a tangent vector and of
projections on the DOF subspaces depends on its pos
relative to all the subspacesH j , corresponding to the whole
set of Lyapunov exponents. In condensed matter systems
Lyapunov spectrum is smooth: the exponents following
first have values slowly decreasing from the maximum o
@20#. As the chaoticity of a DOF increases with its angu
proximity in the tangent space to a rapidly expanding s
space, it is clear that one should also consider the subsp
H j corresponding to expansion coefficients just belowl1.
More generally, one can expect the medium time behavio
a DOF to depend on its angular distance from alls subspaces
H j corresponding to Lyapunov exponents, whether expa
ing or contracting.

In Ref. @14# it has been shown how the coherence ch
acterizing thel th DOF is the result of this medium tim
behavior, i.e., the behavior ofw( l )(t) before w(t) is defi-
nitely oriented along theê1 direction, and hence the expan
sion rate ofw( l )(t) also has reached the valuel1. In order to
determine the behavior ofw( l )(t), one should compute the
angles between each DOF and each subspace characte
by a Lyapunov exponent, but this is not easily practicable
one should exactly know the dynamics of these subspac

Alternatively, one can use an orthogonal set of vect
$vk% k51, . . . ,m, which expand with the Lyapunov expo
nents$lk% ~see Appendix D for more details!. Let $vk%, k
51, . . . ,m, be an orthogonal set of vectors of the tange
spaceTRx

m such that eachvk(t) expands~or contracts! as-
ymptotically with the Lyapunov exponentlk : vk(t)
5uk(t)vk(0)elkt, whereuk(t) is a unitary matrix describing
the ~possible! rotation of vk . The generic vectorw of the
tangent space can be initially decomposed in a sum of v
tors lying along the vectorsvk ,

w~0!5 (
k51

m

@w~0!• v̂k# v̂k[(
k51

m

wk~0!v̂k ,
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wherev̂k[vk /uvk(0)u. As the equations of motion in the tan
gent space are linear, its asymptotic time evolution can
written as

w~ t !5 (
k51

m

wk~0!v̂k~ t !5 (
k51

m

wk~0!uk~ t !v̂k~0!elkt,

uw~ t !u
uw~0!u

5F (
k51

m

wk
2~0!e2lkt

(
k51

m

wk
2~0!

G 1/2

[elet.

In this way for the vectorw one defines an effective expan
sion coefficientle , which depends on time and on the initi
conditions:

le~ t ![
1

2t
lnF (

k51

m

wk
2~0!e2lkt

(
k51

m

wk
2~0!

G .

Unless the initial direction ofw(0) lies along a specific vec
tor vl of the base@wk(0)5dklw(0)#, its evolution will be
influenced by all Lyapunov exponents, and eventually o
by l1.

One can now use for the vectorsv̂k a decomposition on
the orthonormal set ŵ( l ) of the DOF’s: v̂k(t)
5( l 51

n ŵ( l ) cosakl(t)e
lkt, whereakl is the angle between vec

tor v̂k and the subspaceTSl , corresponding to thel th DOF
or set of DOF’s. Using the previous decomposition ofw, one
finds

w~ t !5 (
k51

m

wk~0!v̂k~ t !5(
l 51

n

(
k51

m

wk~0!cosakl~ t !elktŵ( l )

[(
l 51

n

w( l )~ t !ŵ( l ),

wherew( l ) is the projection ofw on TSl . The asymptotic
time evolution of the component ofw(t) on thel th subspace
can thus be represented through

uw( l )~ t !u

uw( l )~0!u
[ele

( l )(t)t. ~3!

This definesle
( l )(t) as an effective expansion coefficie

for the l th subspace of DOF’s, which depends on time a
on the initial condition:
e

y

d

le
( l )~ t !5

1

2t
lnF (

k51

m

wk
2~0!cos2 akl~ t !e2lkt

(
k51

m

wk
2~0!cos2 akl~0!

G .

The complete set of angles$akl% characterizes completel
the time evolution of all subspaces of the tangent space,
the computation ofn3m terms can become a heavy task f
large systems. In addition to the computational burden, us
the whole set$akl% would make it impossible to take advan
tage of the synoptic view provided by a single coheren
spectrum, the one entailing only the angles with the m
expanding subspace@12#. Fortunately, the tangent spac
seems to be structurated in such a way that the angles
tween a generic tangent vector and the most expanding
rections have similar values, and the same holds for the m
contracting ones. By this we mean that the projection o
tangent vector on a subspace characterized by a g
Lyapunov exponent turns out to be very similar in magnitu
to the projection on another subspace characterized b
Lyapunov exponent similar to the previous one@21#.

Moreover, the values of the projections on the most
panding vectors are grouped together, well distinct from v
ues of the projections on the most contracting ones. If o
assumes this to be a generic property of condensed m
systems, the CA’s defined in Ref.@12# should also be indica-
tive of the angles the DOF’s make with the subspaces
beled by the Lyapunov exponents closely following the fi
~maximum! one; they should thus entail the relevant info
mation on the degree of chaoticity, due to the angular d
tance from the most expanding directions.

VII. COHERENCE TIMES

In Sec. IV A we observed that when the number of DOF
n becomes very large, the average CAa increases toward
p/2 ~because cosa51/An), and it is difficult to distinguish
between the most ordered DOF’s, even if they are charac
ized by very different degrees of coherence. Moreover, aa
depends onn, it would be difficult to compare coherenc
properties of systems with different numbers of DOF
Hence we have looked for a new tool independent ofn,
physically meaningful and entailing relevant information
the medium time behavior of the DOF’s.

The natural starting point is given by the effective expa
sion coefficients le

( l )(t); as shown in Sec. VI, they
synthesize—for each DOF—the effect of all expanding a
contracting directions of the phase space. As shown by
mula ~3!, le

( l )(t) characterizes the rate of divergence of t
l th DOF for nearby trajectories, in the same way asle(t)
does for the total divergence of the trajectories.

In analogy with the Lyapunov exponents, one defin
PLE’s for single DOFs@13#:

l ( l )[ lim
t→`

le
( l )~ t !5 lim

t→`

1

t
ln

uw( l )~ t !u

uw( l )~0!u
.

~From now on we drop the subscripte in the effective ex-
pansion coefficientsl! From the theorems quoted in Se
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IV A, we can conclude thatl ( l )5l1 ; l even ifl ( l )(t) may
differ substantially froml1. This difference, and the time
needed to reach the regime wherel ( l ).l1 , characterize
each DOF. The valuel ( l )(t) gives information about the
instantaneous exponential rate of expansion, which m
be—before the relaxation—lower or higher than that of
whole system. Hence we could have characterized each D
by the inverse of the average value ofl ( l )(t), like l1

21 char-
acterizes the total system. As the medium time expansio
w( l )(t) is not an exponential,l ( l )(t) alone is not a good
characterization of thel th DOF. On the other hand,l ( l )(t)
→l1 almost anywhere in the tangent space, but the timet*
after whichl ( l )(t).l1, that is the time the DOF needs t
reach the asymptotic expansion rate of the whole system
difficult to determine, as there is not a neat transition to
asymptotic behavior@14#. A way to characterize a DOF tak
ing into account both these quantities could be to comp
the area of the region betweenl ( l )(t) andl(t). We made an
attempt to compute various quantities related to this a
Unfortunately it turned out that all these quantities we
strongly dependent on the initial conditions, making a
characterization of a pattern among DOF’s impossible, e
when we knew from previous results that there was o
Moreover, in order to compute this area, one would have
integrate in time from 0 tò , which means that one has t
introduce a cutoff. In order to be meaningful, the result of
computation should have a good stability when the cutof
varied in the region following the relaxation. On the co
trary, we found quite often that the integral was not conv
gent and had a strong dependence on the cutoff.

Nevertheless, by observing the behavior ofl ( l )(t) vs t,
one can understand the approach to relaxation of each D
In Figs. 1 and 2 of Ref.@14# we gave the results obtained fo
some groups of DOF’s ate50.2 and 0.002. We reported

ln
uw( l )~ t !u

uw( l )~0!u
5tl ( l )~ t !

vs t, so that the slope of the curves gavel ( l )(t); the curves
had been smoothed by coarse-graining values on a mo
interval ranging over several periods of the normal mod
At the highest energy, where the whole system is in
chaotic regime, all subspaces behave alike, and the cu
corresponding tol ( l )(t) are fairly similar to the global one
relative tol(t), an almost straight line with slopel1; still, a
small but definite difference among DOF’s is evident. At t
lowest energy this difference is more visible, and one c
observe a differentiated behavior of the DOF’s, typical fo
partially ordered dynamics.

In the case where the distinction among the DOF’s is w
defined, one can suppose that for each group a timet l* exists
up to whichl ( l )(t) evolves tol1, while l ( l )(t)5l1 when
t.t l* . The real situation is far from being so regular: t
time t l* is not easily identificable, and one cannot define
average slope in the interval 0 –t* . On the other hand, the
distance between the linestl ( l )(t) and tl(t) oscillates
around its average value whent→`. This distance is the
result of the combined effect of the difference between e
l ( l )(t) and l(t), and of the timet l* needed to relax; it is
y
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easily computable, and the precision of this measure
creases with increasing averaging times@14#.

A hierarchy of coherence among the DOF’s can be es
lished by computing, during the dynamics, the vertical d
tances between each linel ( l )t and the linel1t, and averag-
ing on time. The horizontal distances, which we calltime
shifts, are then obtained dividing the vertical distances by
average common slopel1:

t l5
1

l1
lim
t→`

1

t E0

tS ln
uw~ t8!u
uw~0!u

2 ln
uw( l )~ t8!u

uw( l )~0!u
D dt8

5
1

l1
lim
t→`

1

t E0

tS ln
uw~ t8!u

uw( l )~ t8!u
2 ln

uw~0!u

uw( l )~0!u
D dt8

52
1

l1
S K ln

uw( l )~ t8!u

uw~ t8!u L
t

2 ln
uw( l )~0!u
uw~0!u D

52
1

l1
~^ lnucosb ( l )~ t8!u& t2 lnucosb ( l )~0!u!. ~4!

Hereb ( l ) is the angle between thel th subspace and the ge
neric vectorw. The first term in Eq.~4! has good conver-
gence properties, like the coherence angles; but the se
term in Eq.~4! depends strongly on the initial conditions
the tangent space, and may be large. One can get rid o
dependence on the initial conditions by averaging$t l% over
many differentw(0). Wehave computedt l of all subspaces
at various specific energies; each value is an average ove
initial conditions in the tangent space. For large enou
times, the expansion rate of the distance for initially clo
trajectories isl1; a negative~positive! time shift means that
the corresponding DOF’s difference between initially clo
trajectories reaches a fixed level of expansion a timet l be-
fore ~after! the whole system, i.e., the DOF is more chao
~coherent! than the whole system.

t l can also be written

t l5
1

l1
lim
t→`

1

t E0

t

t8@l~ t8!2l ( l )~ t8!#dt8,

TABLE II. Coherence timest̃ l of the groups of normal modes
at specific energye, for the 2D uncompressed lattice.

e 0.002 0.006 0.02 0.2

t̃1
2355 2130 229 12

t̃2
808 346 135 26

t̃3
2982 787 222 25

t̃4
3186 1109 338 25

t̃5
3079 1100 428 27

t̃6
4776 1405 512 27

t̃7
2878 1168 493 25

t̃8
3333 1383 534 29

l1
21 1563 560 231 24
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and coincide with the ‘‘coherence times’’ defined in a pre
ous work@13#. However, from the numerical point of view
the two formulas are not equivalent, as the latter way
computing enhances numerical errors at short and l
times. At short times the time-dependent Lyapunov ex
nents are numerically ill defined; at long times the differen
between all partial Lyapunov exponents and the total
goes to zero, and is multiplied by a diverging time. The
effects are so large that an interpretation of the results
comes difficult; on the other hand, computing the integra
through formula~4! gives well defined results at all energie
studied.

In order to make a comparison among DOF’s belong
to different states of a system, or to different systems,
also has to include the typical scale of chaoticity of ea
whole system, i.e.l1

21; therefore, we define acoherence

time as t̃ l5(l1)211t l . In Table II we report thet̃ l of the
groups of normal modes at four different energies. So
coherence timest̃ l turn out to be negative, which is due to
negative time shiftt l whose absolute value is larger than t
average expansion ratel1

21. This means that the correspon
ing group of normal modes reaches a given level of chao
ity in advance ofut l u with respect to the system consider
as a whole, of course this is only meaningful for times larg
than ut l u. The coherence times increase, as expected, w
the energy is lowered and the dynamics becomes more
dered. If one excludes the value at the highest energye
50.2), the other points show a dependence on the spe
energye which can roughly represented by a lawt̃ l;e2zl,
with 0.8,zl,1.1, depending on the group of normal mode
The coherence time of a DOF gives the order of magnit
of the time that this DOF needs to relax to equilibrium,
analogy with the time (l1)21 characterizing the relaxation o
the whole system. The results shown in Table II, which
tail the whole dynamics in the tangent space, are in ag
ment with those obtained by computing the CA’s: group 1
always the most chaotic; on the other hand, at high ene
group 8 is the most choerent one, while at low energy i
group 6, as expected@12#. These results seem thus to confir
that the hierarchy among DOF’s obtained by consider
only the maximum expansion subspace, i.e., that given
the CA’s, is representative of all the most expanding dir
tions, as advanced in Sec. VI.

VIII. CONCLUSION

Computer experiments on the dynamics of conden
matter systems show a complex structure of the phase s
in the region of the transition from chaotic to ordered beh
ior. The results of Sec. III locate~in the energy range! the
transition region for 2D and 3D square lattices, and prov
insight into its dynamics, characterized by the coexistenc
ordered and chaotic patterns. This coexistence leads to a
nounced asymmetry in the behavior of different DOF
clearly visible in their energy exchange regime. The use
nongeneric initial conditions, where only a few DOF’s a
excited, reveals a difference in the dynamical behavior
different DOF’s which extends from a region of weak cha
into a region of strong chaos, where a global chaoticity—d
to the presence of some chaotic DOF’s—may hide the e
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tence of other ordered DOF’s.
The results shown in Sec. III stress the need for a n

diagnostic tool suitable to give a measure of chaos and o
of the single DOF’s. This tool—while being easily compu
able and stable—has to be of pratical use for systems w
many DOF’s, and at the same time allow a detailed char
terization of single DOF’s and a synoptic view of the d
namical behavior of the whole system.

In Sec. IV we defined coherence angles through a g
metrical analysis that relates the dynamical behavior o
DOF with its angular proximity to the most expanding dire
tion in the tangent space of the phase space of the system
Sec. V we showed that a small angle characterizes the m
chaotic DOF’s, while more ordered DOF’s have directio
well apart from the one characterized by the high
Lyapunov exponent. CA’s were defined and measured
asymptotic quantities; on the other hand, the short and
dium time dynamical behavior of the system is influenced
all the Lyapunov directions~expanding and contracting!. To
take into account this broader set of factors affecting
evolution of each DOF, in Sec. VI we generalized the de
nition of coherence angles. It turns out that there exist
particular disposition of the expanding and contracti
Lyapunov vectors which could result to be a generic prope
of condensed matter systems. As a consequence of this
position, CA’s deliver most of the information which coul
be obtained—with a much heavier computation
burden—by explicitly computing the generalized coheren
angles between each DOF and all Lyapunov directions.

The information provided by the DOF’s for the squa
lattices studied here shows that in the transition region
ferent DOF’s may have quite different degrees of chaos. T
is an important problem, not only from a theoretical point
view, but also for the reliability of numerical simulation
When simulating equilibrium properties of a real system, o
should ascertain that the simulated system is endowed
the required equilibrium dynamical properties. In molecu
dynamics computer experiments, equilibrium time avera
are assumed to be equivalent to ensemble averages. Th
true if all DOF’s behave chaotically, and in a similar wa
this secures that the results are statistically meaningful,
do not depend on the initial state of the simulation.

However, an underlying ordered dynamics may cau
troubles when measuring standard properties of stand
model systems. As an example, one can take the specific
at a constant volume of a Lennard-Jones crystal, measure
a system at constant energy through the fluctuation of
kinetic energy@22#. This quantity shows an absurd behavi
at low temperature~positive and negative divergence!, when
computed over typical average times, which are usually s
ficient to compute this same correctly quantity at higher te
peratures. This happens because, due to the increase of
in the low energy dynamics, the fluctuation of the kine
energy relaxes to its expected value over times which may
more than two orders of magnitude longer than the tipi
ones@23,24#. How can one be sure that the system at han
‘‘statistically correct,’’ that is, that time averages are equiv
lent to ensemble averages? One obvious requirement is
the averages be computed over times which are significa
greater than the time needed by the most ordered DOF’
relax to equilibrium~which may become impossible at low
energies!.
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In order to obtain a physically meaningful quantity,
Sec. VII we introducedcoherence times,which give a mea-
sure of the time each DOF needs to relax to equilibrium. O
tools have been used to analyze the dynamics of simple
crocrystals, as an example of Hamiltonian systems w
many DOF’s. Results for 2D and 3D Lennard-Jones latti
show that at high temperature all DOF’s tend to the sa
level of chaoticity. On the other hand, at low temperature
found a nontrivial structure of the spectrum of CA’s and
coherence times, indicating the coexistence of DOF’s
dowed with quite different degrees of chaoticity; and t
relaxation times of the various DOF’s seem to increa
roughly with the inverse power of the specific energye.

We will apply the diagnostic tools described in this pap
to other condensed matter systems, e.g., molecules, to
lyze their dynamics. A relevant question will be the spectr
of coherence times, and its dependence on the specific
ergy. We believe that the main features of the transition
gion found in the 2D and 3D square lattices are quite gen
for condensed matter systems at low energy. On the o
hand, the spectrum of the coherence times may well exh
features which are specific to each system.

APPENDIX A

An intuitive explanation of the instability can be obtaine
as follows. ExpandingKT andKL to first order ind2r 0, one
finds that (v1,N

x )25(vN,1
y )2<0 when

r 02d

r 0
>tan2

p

2~N11!
. ~A1!

These two are the first frequencies which become imagin
For N58 the maximum compression allowed before the l
tice becomes unstable corresponds tod.r 020.03r 0.

Looking at the displacements of the particles induced
the two modes of frequencyv1,N

x and vN,1
y , for N58 one

derives:

ui j
x 5

2

9
~21! j 11q18

x ~ t !sin
p i

9
sin

p j

9
, ~A2!

ui j
y 5

2

9
~21! i 11q81

y ~ t !sin
p i

9
sin

p j

9
. ~A3!

Along each horizontal or vertical row, particles have lo
gitudinal displacements of the same sign, and transversal
placements of alternate sign. Alternate rows have longitu
nal displacements of opposite sign, and therefore tend to
with respect to each other. This instability is due to the
teraction being limited to the first neighbors, and is hinde
by the fixed particles of the boundaries. Therefore, the m
mum allowed compression diminishes when the size of
system increases, as shown by formula~A1!.

In general one can write

ui j ~ t !5
2

N11 (
hk

qhk~ t !sinS hp i

N11D sinS kp j

N11D ,

where

qhk~ t !.AhkRe exp@ i ~vhkt1whk!#.
r
i-

h
s
e
e
f
-

e

r
na-

n-
-
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er
it

y.
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-
is-
i-
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-
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e

If vhkPRe ,

1

TE0

T

ui j ~ t !dt50 because
1

TE0

T

qhk~ t !dt50.

If vhkPIm,

1

TE0

T

ui j ~ t !dtÞ0 because
1

TE0

T

qhk~ t !dtÞ0.

In the first case the particles oscillate around their sta
equilibrium position. In the second case they do not rem
around their~nonstable! position, but move to a new stabl
position.

APPENDIX B

In this appendix we give a description of the modifie
central difference algorithm we have used in our numeri
simulations. If r , v, and M are the position, velocity, and
mass of a generic particle, respectively,F the force acting on
it, and h the time step in the integration of the equations
motion, then

r ~ t6h!5r ~ t !6hv~ t !1
h2

2M
F~ t !6

h3

6M
Ḟ~ t !1O~h4!.

~B1!

The standard central difference algorithm is obtained su
ming and subtracting the two equations~B1!, obtaining:

r ~ t1h!52r ~ t2h!12r ~ t !1
h2

M
F~ t !1O~h4!,

v~ t !5
r ~ t1h!2r ~ t2h!

2h
1O~h2!. ~B2!

With such an algorithm the velocities are known with a p
cision lower by two orders of magnitude in the time step th
that of the positions: this is not a problem for the dynami
evolution of the system, but it may affect the computation
thermodynamical quantities.

To improve by one order the precision in the velocitie
instead of Eqs.~B2! we used

r ~ t6h!5r ~ t !6hv~ t !1
h2

2M
F~ t !6

h3

6M
Ḟ~ t !1O~h4!,

hv~ t2h!5hv~ t !2
h2

M
F~ t !1

h3

2M
Ḟ~ t !1O~h4!.

Combining these equations we obtain

v~ t !5
1

h F3

2
„r ~ t !2r ~ t2h!…2

1

2
hv~ t2h!1

h2

4M
F~ t !G

1O~h3!

The improvement in the computation of the velocities, a
thus of the kinetic energy, enhances the conservation of
total energy during the time evolution of the system.
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APPENDIX C

The explicit calculation of the equations of motion in th
tangent space of a Lennard-Jones lattice is rather cum
some. Here we give only the final equations for the 2D a
3D lattices, also in order to show the numerical burden t
the tangent dynamics introduces in the simulation. For
2D lattice we have

d ẍlm~ t !5 (
l ,8m8

H F S V92
V8

r D S x̃~ t !

r
D 2

1
V8

r
Gd x̃~ t !

1S V92
V8

r D x̃~ t !

r

ỹ~ t !

r
d ỹ~ t !J ,

d ÿlm~ t !5 (
l 8,m8

H F S V92
V8

r D S ỹ~ t !

r
D 2

1
V8

r
Gd ỹ~ t !

1S V92
V8

r D ỹ~ t !

r

x̃~ t !

r
d x̃~ t !J ,

where V85dV/dr, V95d2V/dr2 @V is the Lennard-Jone
potential of formula~1!#, and the sum is over all the pa
ticles. (l ,m) are the indices of a particle,dxlm(t) and
dylm(t) are the tangent coordinates of particle (l ,m); x̃

5xlm2xl 8m8 , ỹ5ylm2yl 8m8 , and r is the distance of par
ticle (l ,m) from particle (l 8,m8); d x̃5dxlm2dxl 8m8 and
d ỹ5dylm2dyl 8m8 .

In three dimensions the equations are
er-
d
t
e

d ẍlmn~ t !5 (
l ,8m,8n8

H F S V92
V8

r D S x̃~ t !

r
D 2

1
V8

r
Gd x̃~ t !

1S V92
V8

r D x̃~ t !

r
F ỹ~ t !

r
d ỹ~ t !1

z̃~ t !

r
d z̃~ t !G J ,

d ÿlmn~ t !5 (
l 8,m8,n8

H F S V92
V8

r D S ỹ~ t !

r
D 2

1
V8

r
Gd ỹ~ t !

1S V92
V8

r D ỹ~ t !

r
F x̃~ t !

r
d x̃~ t !1

z̃~ t !

r
d z̃~ t !G J ,

d z̈lmn~ t !5 (
l 8,m8,n8

H F S V92
V8

r D S z̃~ t !

r
D 2

1
V8

r
Gd z̃~ t !

1S V92
V8

r D z̃~ t !

r
F x̃~ t !

r
d x̃~ t !1

ỹ~ t !

r
d ỹ~ t !G J .

APPENDIX D

For the sake of simplicity we restrict our discussion to
nondegenerate Lyapunov spectrum, so that each vectoêi
corresponds to a differentl i ; the extension to the case o
degeneracy is straightforward. Let us decompose each ve
of the set$êi% ( i .1) into two components, one parallel an
one orthogonal toê1 ~the maximum expansion direction!: êi

[ei ,p1ei ,o , i 52, . . . ,m with ei ,p[(e1•ei)ê1 and ei ,o[êi
2ei ,p .

Let us write the tangent vectorw(t) using this decompo-
sition:
where

lim
t→`

1

t
ln a15 lim

t→`

1

t
ln c1exp~l1t !5 lim

t→`

1

t
ln c11l15l1 ,

lim
t→`

1

t
ln ak5lk, k52, . . . ,m

and

v15ê1 ,

vk5ek,o , k52, . . . ,m.

Eachvk (k.1) is orthogonal toê1.
The coefficient a2 of v2 grows asymptotically like
exp(l2t). We can now decompose eachvk (k.2) into two
components, one parallel and one orthogonal tov2.

Iterating this method for eachvk we obtain w(t)
5(k51

m ãkṽk , where

ṽ15ê1 ,

ṽ25ê22
ṽ1•ê2

ṽ1• ṽ1

ṽ1 ,

ṽ35ê32
ṽ1•ê3

ṽ1• ṽ1

ṽ12
ṽ2•ê3

ṽ2• ṽ2

ṽ2 ,



a

set
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ṽ45ê42
ṽ1•ê4

ṽ1• ṽ1

ṽ12
ṽ2•ê4

ṽ2• ṽ2

ṽ22
ṽ3•ê4

ṽ3• ṽ3

ṽ3 ,

. . . . . . ,

. . . . . . ,
c

. A
and lim
t→`

(1/t)ln ãk5lk ; k, eachãk being a linear combi-

nation of exp(lit) (i>k). In this way we have constructed

set oforthogonalvectors$ṽk% in each tangent spaceTRx„t… ;
the vectors evolve asymptotically with rates given by the
of Lyapunov exponents$l i%.
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